arning

A Probabllistic Perspective

Kevin P. Murphy

Machine Learning: A Probabilistic Perspective

Machine Learning
A Probabilistic Perspective

Kevin P. Murphy
The MIT Press

Cambridge, Massachusetts
London, England

© 2012 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in
writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu

This book was set in the FIEX programming language by the author. Printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Information

Murphy, Kevin P.

Machine learning : a probabilistic perspective / Kevin P. Murphy.
p. cm. — (Adaptive computation and machine learning series)
Includes bibliographical references and index.

ISBN 978-0-262-01802-9 (hardcover : alk. paper)

1. Machine learning. 2. Probabilities. I. Title.

Q325.5.M87 2012

006.3'1—dc23

2012004558

100 9 87 6 5 4 3 21

This book is dedicated to Alessandro, Michael and Stefano,
and to the memory of Gerard Joseph Murphy.

Contents

Preface xxvii
1 Introduction 1
11 Machine learning: what and why? 1
111 Types of machine learning 2
12 Supervised learning 3
121 Classification 3
1.2.2 Regression 8
13 Unsupervised learning 9
131 Discovering clusters 10
13.2 Discovering latent factors n
1.3.3 Discovering graph structure 13
134 Matrix completion 14
14 Some basic concepts in machine learning 16
1.4.1 Parametric vs non-parametric models 16
1.4.2 A simple non-parametric classifier: K -nearest neighbors
14.3 The curse of dimensionality 18
1.4.4 Parametric models for classification and regression 19
14.5 Linear regression 19

14.6 Logistic regression 21
14.7 Overfitting 22

1.4.8 Model selection 22

14.9 No free lunch theorem 24

2 Probability 27

21
2.2

Introduction 27
A brief review of probability theory 28
2.21 Discrete random variables 28

222 Fundamental rules 28

223 Bayes rule 29

224 Independence and conditional independence 30
225 Continuous random variables 32

16

viii

2.2.6 Quantiles 33

2.2.7 Mean and variance 33
2.3 Some common discrete distributions 34
2.31 The binomial and Bernoulli distributions 34
2.3.2 The multinomial and multinoulli distributions
233 The Poisson distribution 37
234 The empirical distribution 37
24 Some common continuous distributions 38
241 Gaussian (normal) distribution 38
242 Degenerate pdf 39
243 The Laplace distribution 41
244 The gamma distribution 41
245 The beta distribution 42
2.4.6 Pareto distribution 43
2.5 Joint probability distributions 44
251 Covariance and correlation 44
2.5.2 The multivariate Gaussian 46
253 Multivariate Student ¢ distribution 46
2.5.4 Dirichlet distribution 47
2.6 Transformations of random variables 49
2.6.1 Linear transformations 49
2.6.2 General transformations 50
2.6.3 Central limit theorem 51
2.7 Monte Carlo approximation 52
271 Example: change of variables, the MC way 53
272 Example: estimating m by Monte Carlo integration
273 Accuracy of Monte Carlo approximation 54
2.8 Information theory 56
2.8.1 Entropy 56
2.8.2 KL divergence 57
2.83 Mutual information 59
Generative models for discrete data 65
31 Introduction 65
3.2 Bayesian concept learning 65
3.2.1 Likelihood 67
3.2.2 Prior 67
3.2.3 Posterior 68
3.24 Posterior predictive distribution 71
3.2.5 A more complex prior 72
3.3 The beta-binomial model 72

331 Likelihood 73

3.3.2 Prior 74

3.3.3 Posterior 75

3.34 Posterior predictive distribution 77

54

CONTENTS

CONTENTS ix

3.4 The Dirichlet-multinomial model 78
341 Likelihood 79
3.4.2 Prior 79
3.4.3 Posterior 79
344 Posterior predictive 81
3.5 Naive Bayes classifiers 82
3.5.1 Model fitting 83
3.5.2 Using the model for prediction 85
35.3 The log-sum-exp trick 86
3.54 Feature selection using mutual information 86
355 Classifying documents using bag of words 87
4 Gaussian models 97
41 Introduction 97
411 Notation 97
412 Basics 97
413 MLE for an MVN 99
4.14 Maximum entropy derivation of the Gaussian * 101
4.2 Gaussian discriminant analysis 101
421 Quadratic discriminant analysis (QDA) 102
422 Linear discriminant analysis (LDA) 103
4.2.3 Two-class LDA 104
424 MLE for discriminant analysis 106
4.2.5 Strategies for preventing overfitting 106
4.2.6 Regularized LDA * 107
4.2.7 Diagonal LDA 108
4.2.8 Nearest shrunken centroids classifier * 109
4.3 Inference in jointly Gaussian distributions 110
431 Statement of the result m
432 Examples m
433 Information form 115
434 Proof of the result * 116
44 Linear Gaussian systems 19
441 Statement of the result 119
442 Examples 120
443 Proof of the result * 124
45 Digression: The Wishart distribution * 125
451 Inverse Wishart distribution 126
4.5.2 Visualizing the Wishart distribution * 127
4.6 Inferring the parameters of an MVN 127

461 Posterior distribution of 128

4.6.2 Posterior distribution of 3 * 128

4.6.3 Posterior distribution of g and ¥ * 132

4.6.4 Sensor fusion with unknown precisions * 138

5 Bayesian statistics 149

6

51
5.2

5.3

54

5.5

5.6

5.7

Introduction 149

Summarizing posterior distributions 149
5.21 MAP estimation 149

5.2.2 Credible intervals 152

5.2.3 Inference for a difference in proportions 154
Bayesian model selection 155
531 Bayesian Occam’s razor 156

5.3.2 Computing the marginal likelihood (evidence) 158
5.3.3 Bayes factors 163

534 Jeffreys-Lindley paradox * 164

Priors 165

5.4.1 Uninformative priors 165

5.4.2 Jeffreys priors * 166

5.4.3 Robust priors 168

544 Mixtures of conjugate priors 168
Hierarchical Bayes 171

5.5.1 Example: modeling related cancer rates 171
Empirical Bayes 172

5.6.1 Example: beta-binomial model 173

5.6.2 Example: Gaussian-Gaussian model 173
Bayesian decision theory 176
5.7.1 Bayes estimators for common loss functions 177

5.7.2 The false positive vs false negative tradeoff 180
5.7.3 Other topics * 184

Frequentist statistics 191

6.1

6.2

6.3

6.4

6.5

Introduction 191

Sampling distribution of an estimator 191

6.2.1 Bootstrap 192

6.2.2 Large sample theory for the MLE * 193
Frequentist decision theory 194

6.3.1 Bayes risk 195

6.3.2 Minimax risk 196

6.3.3 Admissible estimators 197

Desirable properties of estimators 200

6.4.1 Consistent estimators 200

6.4.2 Unbiased estimators 200

6.4.3 Minimum variance estimators 201

6.4.4 The bias-variance tradeoff 202

Empirical risk minimization 204

6.5.1 Regularized risk minimization 205

6.5.2 Structural risk minimization 206

6.5.3 Estimating the risk using cross validation 206

6.5.4 Upper bounding the risk using statistical learning theory *

CONTENTS

209

CONTENTS xi

6.5.5 Surrogate loss functions 210

6.6 Pathologies of frequentist statistics * 211
6.6.1 Counter-intuitive behavior of confidence intervals 212
6.6.2 p-values considered harmful 213
6.6.3 The likelihood principle 214
6.6.4 Why isn't everyone a Bayesian? 215

7 Linear regression 217

71 Introduction 217

7.2 Model specification 217

7.3 Maximum likelihood estimation (least squares) 217
731 Derivation of the MLE 219
7.3.2 Geometric interpretation 220
7.3.3 Convexity 221

74 Robust linear regression * 223

7.5 Ridge regression 225
75.1 Basic idea 225
752 Numerically stable computation * 227
7.5.3 Connection with PCA * 228
754 Regularization effects of big data 230

7.6 Bayesian linear regression 231
7.6.1 Computing the posterior 232
7.6.2 Computing the posterior predictive 233
7.6.3 Bayesian inference when o2 is unknown * 234
7.6.4 EB for linear regression (evidence procedure) 238

8 Logistic regression 245

8.1 Introduction 245

8.2 Model specification 245

8.3 Model fitting 245
8.3.1 MLE 246
8.3.2 Steepest descent 247
8.3.3 Newton’s method 249
8.34 Iteratively reweighted least squares (IRLS) 250
8.3.5 Quasi-Newton (variable metric) methods 251
8.3.6 {5 regularization 252
8.3.7 Multi-class logistic regression 252

8.4 Bayesian logistic regression 254
8.4.1 Laplace approximation 255
8.4.2 Derivation of the BIC 255
8.4.3 Gaussian approximation for logistic regression 256
8.4.4 Approximating the posterior predictive 256
8.4.5 Residual analysis (outlier detection) * 260

8.5 Online learning and stochastic optimization 261

8.5.1 Online learning and regret minimization 262

xii

10

CONTENTS

8.5.2 Stochastic optimization and risk minimization 262
8.5.3 The LMS algorithm 264

8.5.4 The perceptron algorithm 265

8.5.5 A Bayesian view 266

8.6 Generative vs discriminative classifiers 267
8.6.1 Pros and cons of each approach 268
8.6.2 Dealing with missing data 269
8.6.3 Fisher’s linear discriminant analysis (FLDA) * 271
Generalized linear models and the exponential family 281
9.1 Introduction 281
9.2 The exponential family 281
9.21 Definition 282
9.2.2 Examples 282
9.2.3 Log partition function 284
9.24 MLE for the exponential family 286
9.2.5 Bayes for the exponential family * 287
9.2.6 Maximum entropy derivation of the exponential family * 289
9.3 Generalized linear models (GLMs) 290
931 Basics 290
9.3.2 ML and MAP estimation 292
9.33 Bayesian inference 293
9.4 Probit regression 293
9.4.1 ML/MAP estimation using gradient-based optimization 294
9.4.2 Latent variable interpretation 294
9.4.3 Ordinal probit regression * 295
9.4.4 Multinomial probit models * 295
9.5 Multi-task learning 296
9.5.1 Hierarchical Bayes for multi-task learning 296
9.5.2 Application to personalized email spam filtering 296
9.5.3 Application to domain adaptation 297
9.5.4 Other kinds of prior 297
9.6 Generalized linear mixed models * 298
9.6.1 Example: semi-parametric GLMMs for medical data 298
9.6.2 Computational issues 300
9.7 Learning to rank * 300
9.71 The pointwise approach 301
9.7.2 The pairwise approach 301
9.7.3 The listwise approach 302
9.74 Loss functions for ranking 303
Directed graphical models (Bayes nets) 307

10.1

Introduction 307
10.1.1 Chain rule 307
1012 Conditional independence 308

CONTENTS

10.L.3 Graphical models 308

1014 Graph terminology 309

1015 Directed graphical models 310
10.2 Examples 31

10.21 Naive Bayes classifiers 31

10.2.2 Markov and hidden Markov models 312

10.2.3 Medical diagnosis 313

10.24 Genetic linkage analysis * 315

10.2.5 Directed Gaussian graphical models * 318
10.3 Inference 319
10.4 Learning 320

1041 Plate notation 320

1042 Learning from complete data 322

10.4.3 Learning with missing and/or latent variables
10.5 Conditional independence properties of DGMs 324

10.5.1 d-separation and the Bayes Ball algorithm (global Markov

properties) 324
10.5.2 Other Markov properties of DGMs 327
10.5.3 Markov blanket and full conditionals 327
10.6 Influence (decision) diagrams * 328

11 Mixture models and the EM algorithm 337
1.1 Latent variable models 337
1.2 Mixture models 337
11.2.1 Mixtures of Gaussians 339
11.2.2 Mixture of multinoullis 340

11.2.3 Using mixture models for clustering 340
1124 Mixtures of experts 342
11.3 Parameter estimation for mixture models 345

11.3.1 Unidentifiability 346

11.3.2 Computing a MAP estimate is non-convex
114 The EM algorithm 348

11.4.1 Basic idea 349

11.4.2 EM for GMMs 350

11.4.3 EM for mixture of experts 357

11.4.4 EM for DGMs with hidden variables 358

11.4.5 EM for the Student distribution * 359

11.4.6 EM for probit regression * 362

1.4.7 Theoretical basis for EM * 363

11.4.8 Online EM 365

11.4.9 Other EM variants * 367
1.5 Model selection for latent variable models 370

1.5.1 Model selection for probabilistic models 370

11.5.2 Model selection for non-probabilistic methods
1.6 Fitting models with missing data 372

xiii

Xiv

11.6.1 EM for the MLE of an MVN with missing data 373

12 Latent linear models 381

13

425

440

121 Factor analysis 381
12.11 FA is a low rank parameterization of an MVN 381
1212 Inference of the latent factors 382
12.1.3 Unidentifiability 383
1214 Mixtures of factor analysers 385
12.1.5 EM for factor analysis models 386
121.6 Fitting FA models with missing data 387
12.2 Principal components analysis (PCA) 387
1221 Classical PCA: statement of the theorem 387
12.2.2 Proof * 389
12.2.3 Singular value decomposition (SVD) 392
12.2.4 Probabilistic PCA 395
1225 EM algorithm for PCA 396
123 Choosing the number of latent dimensions 398
12.31 Model selection for FA/PPCA 398
1232 Model selection for PCA 399
124 PCA for categorical data 402
125 PCA for paired and multi-view data 404
1251 Supervised PCA (latent factor regression) 405
1252 Partial least squares 406
1253 Canonical correlation analysis 407
12.6 Independent Component Analysis (ICA) 407
12.61 Maximum likelihood estimation 410
12.6.2 The FastICA algorithm 41
12.6.3 Using EM 414
12.6.4 Other estimation principles * 415
Sparse linear models 421
131 Introduction 421
13.2 Bayesian variable selection 422
13.21 The spike and slab model 424
13.2.2 From the Bernoulli-Gaussian model to ¢y regularization
13.2.3 Algorithms 426
13.3 ¢y regularization: basics 429
13.31 Why does ¢; regularization yield sparse solutions? 430
13.3.2 Optimality conditions for lasso 431
13.3.3 Comparison of least squares, lasso, ridge and subset selection
13.34 Regularization path 436
13.3.5 Model selection 439
13.3.6 Bayesian inference for linear models with Laplace priors
13.4 ¢y regularization: algorithms 441

13.4.1 Coordinate descent 441

CONTENTS

435

CONTENTS

14

13.5

13.6

13.7

13.8

13.42 LARS and other homotopy methods 441

1343 Proximal and gradient projection methods 442
1344 EM for lasso 447

¢y regularization: extensions 449

13.51 Group Lasso 449

13,52 Fused lasso 454

13.5.3 Elastic net (ridge and lasso combined) 455
Non-convex regularizers 457

13.6.1 Bridge regression 458

13.6.2 Hierarchical adaptive lasso 458

13.6.3 Other hierarchical priors 462

Automatic relevance determination (ARD)/sparse Bayesian learning (SBL) 463
13.71 ARD for linear regression 463

13.7.2 Whence sparsity? 465

13.7.3 Connection to MAP estimation 465

13.74 Algorithms for ARD * 466

13.7.5 ARD for logistic regression 468

Sparse coding * 468

13.81 Learning a sparse coding dictionary 469
13.8.2 Results of dictionary learning from image patches 470
13.8.3 Compressed sensing 472

13.84 Image inpainting and denoising 472

Kernels 479

141
14.2

14.3

14.4

14.5

Introduction 479

Kernel functions 479
14.21 RBF kernels 480
1422 Kernels for comparing documents 480

14.2.3 Mercer (positive definite) kernels 481

1424 Linear kernels 482

1425 Matern kernels 482

14.2.6 String kernels 483

14.2.7 Pyramid match kernels 484

14.2.8 Kernels derived from probabilistic generative models 485
Using kernels inside GLMs 486

1431 Kernel machines 486

14.3.2 LIVMs, RVMs, and other sparse vector machines 487
The kernel trick 488

1441 Kernelized nearest neighbor classification 489

1442 Kernelized K-medoids clustering 489

1443 Kernelized ridge regression 492

1444 Kernel PCA 493

Support vector machines (SVMs) 496

1451 SVMs for regression 497

1452 SVMs for classification 498

XV

XVi
1453 Choosing C 504
1454 Summary of key points 504
1455 A probabilistic interpretation of SVMs 505
14.6 Comparison of discriminative kernel methods 505
147 Kernels for building generative models 507
14.7.1 Smoothing kernels 507
1472 Kernel density estimation (KDE) 508
14.7.3 From KDE to KNN 509
1474 Kernel regression 510
1475 Locally weighted regression 512
15 Gaussian processes 515
151 Introduction 515
15.2 GPs for regression 516
15.2.1 Predictions using noise-free observations 517
15.2.2 Predictions using noisy observations 518
1523 Effect of the kernel parameters 519
1524 Estimating the kernel parameters 521
15.2.5 Computational and numerical issues * 524
15.2.6 Semi-parametric GPs * 524
15.3 GPs meet GLMs 525
1531 Binary classification 525
153.2 Multi-class classification 528
15.3.3 GPs for Poisson regression 531
154 Connection with other methods 532
154.1 Linear models compared to GPs 532
154.2 Linear smoothers compared to GPs 533
1543 SVMs compared to GPs 534
1544 L1VM and RVMs compared to GPs 534
1545 Neural networks compared to GPs 535
15.4.6 Smoothing splines compared to GPs * 536
154.7 RKHS methods compared to GPs * 538
15,5 GP latent variable model 540
15.6 Approximation methods for large datasets 542
16 Adaptive basis function models 543
161 Introduction 543
16.2 Classification and regression trees (CART) 544
16.2.1 Basics 544
16.2.2 Growing a tree 545
16.2.3 Pruning a tree 549
16.2.4 Pros and cons of trees 550
16.2.5 Random forests 550
16.2.6 CART compared to hierarchical mixture of experts *
16.3 Generalized additive models 552

551

CONTENTS

CONTENTS

17

16.4

16.5

16.6

16.7

16.8

16.3.1 Backfitting 552

16.3.2 Computational efficiency 553

16.3.3 Multivariate adaptive regression splines (MARS) 553
Boosting 554

1641 Forward stagewise additive modeling 555

16.4.2 L2boosting 557

16.4.3 AdaBoost 558

16.4.4 LogitBoost 559

16.4.5 Boosting as functional gradient descent 560
16.4.6 Sparse boosting 561

16.4.7 Multivariate adaptive regression trees (MART) 562
16.4.8 Why does boosting work so well? 562

16.4.9 A Bayesian view 563

Feedforward neural networks (multilayer perceptrons) 563
16.51 Convolutional neural networks 564

16.5.2 Other kinds of neural networks 568

16.5.3 A brief history of the field 568

16.5.4 The backpropagation algorithm 569

16.5.5 Identifiability 572

16.5.6 Regularization 572

16.5.7 Bayesian inference * 576

Ensemble learning 580

16.6.1 Stacking 580

16.6.2 Error-correcting output codes 581

16.6.3 Ensemble learning is not equivalent to Bayes model averaging
Experimental comparison 582

16.71 Low-dimensional features 582

16.7.2 High-dimensional features 583

Interpreting black-box models 585

Markov and hidden Markov models 589

171
17.2

17.3

17.4

Introduction 589

Markov models 589

17.21 Transition matrix 589

17.2.2 Application: Language modeling 591

17.2.3 Stationary distribution of a Markov chain * 596

1724 Application: Google’s PageRank algorithm for web page ranking *

Hidden Markov models 603

1731 Applications of HMMs 604

Inference in HMMs 606

1741 Types of inference problems for temporal models 606
1742 The forwards algorithm 609

1743 The forwards-backwards algorithm 610

1744 The Viterbi algorithm 612

1745 Forwards filtering, backwards sampling 616

581

xvii

600

xviii

17.5

17.6

Learning for HMMs 617

1751 Training with fully observed data 617

17.5.2 EM for HMMs (the Baum-Welch algorithm) 618
17.5.3 Bayesian methods for “fitting” HMMs * 620
17.5.4 Discriminative training 620

1755 Model selection 621

Generalizations of HMMs 621

17.6.1 Variable duration (semi-Markov) HMMs 622
17.6.2 Hierarchical HMMs 624

17.6.3 Input-output HMMs 625

17.6.4 Auto-regressive and buried HMMs 626
17.6.5 Factorial HMM 627

17.6.6 Coupled HMM and the influence model 628
17.6.7 Dynamic Bayesian networks (DBNs) 628

18 State space models 631

19

18.1
18.2

18.3

18.4

18.5

18.6

Introduction 631

Applications of SSMs 632

1821 SSMs for object tracking 632

18.2.2 Robotic SLAM 633

18.2.3 Online parameter learning using recursive least squares
18.2.4 SSM for time series forecasting * 637

Inference in LG-SSM 640

18.31 The Kalman filtering algorithm 640

18.3.2 The Kalman smoothing algorithm 643

Learning for LG-SSM 646

184.1 Identifiability and numerical stability 646

18.4.2 Training with fully observed data 647

18.4.3 EM for LG-SSM 647

1844 Subspace methods 647

18.45 Bayesian methods for “fitting” LG-SSMs 647
Approximate online inference for non-linear, non-Gaussian SSMs
18,51 Extended Kalman filter (EKF) 648

18.5.2 Unscented Kalman filter (UKF) 650

18.5.3 Assumed density filtering (ADF) 652

Hybrid discrete/continuous SSMs 655

18.61 Inference 656

18.6.2 Application: data association and multi-target tracking
18.6.3 Application: fault diagnosis 659

18.6.4 Application: econometric forecasting 660

Undirected graphical models (Markov random fields) 661

191
19.2

Introduction 661
Conditional independence properties of UGMs 661
19.2.1 Key properties 661

636

647

658

CONTENTS

CONTENTS

19.3

194

19.5

19.6

19.7

19.22 An undirected alternative to d-separation 663

19.23 Comparing directed and undirected graphical models 664

Parameterization of MRFs 665

19.31 The Hammersley-Clifford theorem 665

19.3.2 Representing potential functions 667

Examples of MRFs 668

1941 Ising model 668

194.2 Hopfield networks 669

19.43 Potts model 671

19.4.4 Gaussian MRFs 672

1945 Markov logic networks * 674

Learning 676

19.51 Training maxent models using gradient methods 676
19.5.2 Training partially observed maxent models 677
19.5.3 Approximate methods for computing the MLEs of MRFs
19.54 Pseudo likelihood 678

19.5.5 Stochastic maximum likelihood 679

19.5.6 Feature induction for maxent models * 680

19.5.7 Tterative proportional fitting (IPF) * 681

Conditional random fields (CRFs) 684

19.6.1 Chain-structured CRFs, MEMMs and the label-bias problem
19.6.2 Applications of CRFs 686

19.6.3 CREF training 692

Structural SVMs 693

19.71 SSVMs: a probabilistic view 693

19.7.2 SSVMs: a non-probabilistic view 695

19.7.3 Cutting plane methods for fitting SSVMs 698

19.74 Online algorithms for fitting SSVMs 700

19.75 Latent structural SVMs 701

20 Exact inference for graphical models 707

20.1
20.2

20.3

204

Introduction 707

Belief propagation for trees 707

20.21 Serial protocol 707

20.2.2 Parallel protocol 709

20.23 Gaussian BP * 710

20.24 Other BP variants * 712

The variable elimination algorithm 714

20.31 The generalized distributive law * 7
20.3.2 Computational complexity of VE 77
20.3.3 A weakness of VE 720

The junction tree algorithm * 720
2041 Creating a junction tree 720
20.4.2 Message passing on a junction tree 722

20.4.3 Computational complexity of JTA 725

684

Xix

XX

21

22

20.44 JTA generalizations * 726
20.5 Computational intractability of exact inference in the worst case 726
20.51 Approximate inference 727

Variational inference 731
211 Introduction 731
212 Variational inference 732
21.21 Alternative interpretations of the variational objective 733

21.2.2 Forward or reverse KL? * 733
21.3 The mean field method 735
2131 Derivation of the mean field update equations 736
2132 Example: mean field for the Ising model 737
214 Structured mean field * 739
2141 Example: factorial HMM 740
215 Variational Bayes 742
2151 Example: VB for a univariate Gaussian 742
2152 Example: VB for linear regression 746
21.6 Variational Bayes EM 749
21.6.1 Example: VBEM for mixtures of Gaussians * 750
21.7 Variational message passing and VIBES 756
21.8 Local variational bounds * 756
21.81 Motivating applications 756
21.8.2 Bohning’s quadratic bound to the log-sum-exp function 758
21.8.3 Bounds for the sigmoid function 760
21.8.4 Other bounds and approximations to the log-sum-exp function *
21.8.5 Variational inference based on upper bounds 763

More variational inference 767

221 Introduction 767
222 Loopy belief propagation: algorithmic issues 767
2221 A brief history 767
2222 LBP on pairwise models 768
22.23 LBP on a factor graph 769
22.24 Convergence 771
2225 Accuracy of LBP 774
22.2.6 Other speedup tricks for LBP * 775
22.3 Loopy belief propagation: theoretical issues * 776
2231 UGMs represented in exponential family form 776
22.3.2 The marginal polytope 777
22.3.3 Exact inference as a variational optimization problem 778
2234 Mean field as a variational optimization problem 779
2235 LBP as a variational optimization problem 779
22.3.6 Loopy BP vs mean field 783
224 Extensions of belief propagation * 783
2241 Generalized belief propagation 783

CONTENTS

762

CONTENTS

22.5

22.6

2242 Convex belief propagation 785

Expectation propagation 787

2251 EP as a variational inference problem 788

2252 Optimizing the EP objective using moment matching 789
2253 EP for the clutter problem 791

2254 LBP is a special case of EP 792

22,55 Ranking players using TrueSkill 793

22.5.6 Other applications of EP 799

MAP state estimation 799

22.61 Linear programming relaxation 799

22.6.2 Max-product belief propagation 800

22.6.3 Graphcuts 801

22.6.4 Experimental comparison of graphcuts and BP 804
22.6.5 Dual decomposition 806

23 Monte Carlo inference 815

231
23.2

23.3

23.4

23.5

23.6

Introduction 815

Sampling from standard distributions 815

23.21 Using the cdf 815

23.2.2 Sampling from a Gaussian (Box-Muller method) 817
Rejection sampling 817

2331 Basic idea 817

2332 Example 818

23.3.3 Application to Bayesian statistics 819

2334 Adaptive rejection sampling 819

23.3.5 Rejection sampling in high dimensions 820
Importance sampling 820

2341 Basic idea 820

23.4.2 Handling unnormalized distributions 821
23.4.3 Importance sampling for a DGM: likelihood weighting 822
2344 Sampling importance resampling (SIR) 822
Particle filtering 823

2351 Sequential importance sampling 824

2352 The degeneracy problem 825

23.5.3 The resampling step 825

2354 The proposal distribution 827

23.5.5 Application: robot localization 828

23.5.6 Application: visual object tracking 828

23.5.7 Application: time series forecasting 831
Rao-Blackwellised particle filtering (RBPF) 831

23.6.1 RBPF for switching LG-SSMs 831

23.6.2 Application: tracking a maneuvering target 832
23.6.3 Application: Fast SLAM 834

24 Markov chain Monte Carlo (MCMC) inference 837

xxi

xxii

241
24.2

24.3

244

24.5

24.6

24.7

CONTENTS

Introduction 837

Gibbs sampling 838

2421 Basic idea 838

2422 Example: Gibbs sampling for the Ising model 838
2423 Example: Gibbs sampling for inferring the parameters of a GMM 840
2424 Collapsed Gibbs sampling * 841

2425 Gibbs sampling for hierarchical GLMs 844

24.2.6 BUGS and JAGS 846

2427 The Imputation Posterior (IP) algorithm 847
24.2.8 Blocking Gibbs sampling 847

Metropolis Hastings algorithm 848

2431 Basic idea 848

2432 Gibbs sampling is a special case of MH 849
2433 Proposal distributions 850

2434 Adaptive MCMC 853

2435 Initialization and mode hopping 854

243.6 Why MH works * 854

24.3.7 Reversible jump (trans-dimensional) MCMC * 855
Speed and accuracy of MCMC 856

2441 The burn-in phase 856

2442 Mixing rates of Markov chains * 857

2443 Practical convergence diagnostics 858

2444 Accuracy of MCMC 860

2445 How many chains? 862

Auxiliary variable MCMC * 863

2451 Auxiliary variable sampling for logistic regression 863
2452 Slice sampling 864

2453 Swendsen Wang 866

2454 Hybrid/Hamiltonian MCMC * 868

Annealing methods 868

24.6.1 Simulated annealing 869

24.6.2 Annealed importance sampling 871

24.6.3 Parallel tempering 871

Approximating the marginal likelihood 872

2471 The candidate method 872

2472 Harmonic mean estimate 872

2473 Annealed importance sampling 873

25 Clustering 875

251

25.2

Introduction 875

25.1.1 Measuring (dis)similarity 875

251.2 Evaluating the output of clustering methods * 876
Dirichlet process mixture models 879

2521 From finite to infinite mixture models 879

25.2.2 The Dirichlet process 882

CONTENTS

26

25.2.3 Applying Dirichlet processes to mixture modeling 885
2524 Fitting a DP mixture model 886

25.3 Affinity propagation 887
254 Spectral clustering 890
2541 Graph Laplacian 891
254.2 Normalized graph Laplacian 892
2543 Example 893
25.5 Hierarchical clustering 893
2551 Agglomerative clustering 895
25.5.2 Divisive clustering 898
2553 Choosing the number of clusters 899
2554 Bayesian hierarchical clustering 899
25.6 Clustering datapoints and features 901
25.6.1 Biclustering 903
25.6.2 Multi-view clustering 903
Graphical model structure learning 907
26.1 Introduction 907
26.2 Structure learning for knowledge discovery 908
26.21 Relevance networks 908
26.2.2 Dependency networks 909
26.3 Learning tree structures 910
26.31 Directed or undirected tree? 9
26.3.2 Chow-Liu algorithm for finding the ML tree structure 912
26.3.3 Finding the MAP forest 912
26.3.4 Mixtures of trees 914
26.4 Learning DAG structures 914
2641 Markov equivalence 914
26.4.2 Exact structural inference 916
26.4.3 Scaling up to larger graphs 920
26.5 Learning DAG structure with latent variables 922
26.5.1 Approximating the marginal likelihood when we have missing data
26.5.2 Structural EM 925
26.5.3 Discovering hidden variables 926
26.54 Case study: Google’s Rephil 928
26.5.5 Structural equation models * 929
26.6 Learning causal DAGs 931
26.61 Causal interpretation of DAGs 931
26.6.2 Using causal DAGs to resolve Simpson’s paradox 933
26.6.3 Learning causal DAG structures 935
26.7 Learning undirected Gaussian graphical models 938

26.7.1 MLE for a GGM 938

26.72 Graphical lasso 939

26.7.3 Bayesian inference for GGM structure * 94
26.74 Handling non-Gaussian data using copulas * 942

xxiii

922

XXiv

26.8 Learning undirected discrete graphical models 942
26.81 Graphical lasso for MRFs/CRFs 942
26.8.2 Thin junction trees 944

27 Latent variable models for discrete data 945

271 Introduction 945

27.2 Distributed state IVMs for discrete data 946
2721 Mixture models 946
27.2.2 Exponential family PCA 947
272.3 LDA and mPCA 948
2724 GaP model and non-negative matrix factorization 949

27.3 Latent Dirichlet allocation (LDA) 950
2731 Basics 950

2732 Unsupervised discovery of topics 953
273.3 Quantitatively evaluating LDA as a language model 953

27.3.4 Fitting using (collapsed) Gibbs sampling 955
2735 Example 956

27.3.6 Fitting using batch variational inference 957
27.3.7 Fitting using online variational inference 959

273.8 Determining the number of topics
274 Extensions of LDA 961
2741 Correlated topic model 961
2742 Dynamic topic model 962
274.3 LDA-HMM 963
2744 Supervised LDA 967
275 IVMs for graph-structured data 970
2751 Stochastic block model 971

960

2752 Mixed membership stochastic block model 973

2753 Relational topic model 974
27.6 LVMs for relational data 975
27.6.1 Infinite relational model 976

27.6.2 Probabilistic matrix factorization for collaborative filtering

27.7 Restricted Boltzmann machines (RBMs) 983
2771 Varieties of RBMs 985
2772 Learning RBMs 987
2773 Applications of RBMs 991

28 Deep learning 995

28.1 Introduction 995

28.2 Deep generative models 995
2821 Deep directed networks 996
2822 Deep Boltzmann machines 996
28.2.3 Deep belief networks 997
28.24 Greedy layer-wise learning of DBNs

28.3 Deep neural networks 999

998

CONTENTS

979

CONTENTS

28.4

28.5

Notation

2831 Deep multi-layer perceptrons 999

28.3.2 Deep auto-encoders 1000

28.3.3 Stacked denoising auto-encoders 1001

Applications of deep networks 1001

2841 Handwritten digit classification using DBNs 1001

28.4.2 Data visualization and feature discovery using deep auto-encoders
28.4.3 Information retrieval using deep auto-encoders (semantic hashing)
2844 Learning audio features using 1d convolutional DBNs 1004
284.5 Learning image features using 2d convolutional DBNs 1005
Discussion 1005

1009

Bibliography 1015

Indexes

1047

Index to code 1047
Index to keywords 1050

XXV

1002
1003

Preface

Introduction

With the ever increasing amounts of data in electronic form, the need for automated methods
for data analysis continues to grow. The goal of machine learning is to develop methods that
can automatically detect patterns in data, and then to use the uncovered patterns to predict
future data or other outcomes of interest. Machine learning is thus closely related to the fields
of statistics and data mining, but differs slightly in terms of its emphasis and terminology. This
book provides a detailed introduction to the field, and includes worked examples drawn from
application domains such as molecular biology, text processing, computer vision, and robotics.

Target audience

This book is suitable for upper-level undergraduate students and beginning graduate students in
computer science, statistics, electrical engineering, econometrics, or any one else who has the
appropriate mathematical background. Specifically, the reader is assumed to already be familiar
with basic multivariate calculus, probability, linear algebra, and computer programming. Prior
exposure to statistics is helpful but not necessary.

A probabilistic approach

This books adopts the view that the best way to make machines that can learn from data is to
use the tools of probability theory, which has been the mainstay of statistics and engineering for
centuries. Probability theory can be applied to any problem involving uncertainty. In machine
learning, uncertainty comes in many forms: what is the best prediction (or decision) given some
data? what is the best model given some data? what measurement should I perform next? etc.

The systematic application of probabilistic reasoning to all inferential problems, including
inferring parameters of statistical models, is sometimes called a Bayesian approach. However,
this term tends to elicit very strong reactions (either positive or negative, depending on who
you ask), so we prefer the more neutral term “probabilistic approach”. Besides, we will often
use techniques such as maximum likelihood estimation, which are not Bayesian methods, but
certainly fall within the probabilistic paradigm.

Rather than describing a cookbook of different heuristic methods, this book stresses a princi-
pled model-based approach to machine learning. For any given model, a variety of algorithms

Xxviii Preface

can often be applied. Conversely, any given algorithm can often be applied to a variety of
models. This kind of modularity, where we distinguish model from algorithm, is good pedagogy
and good engineering.

We will often use the language of graphical models to specify our models in a concise and
intuitive way. In addition to aiding comprehension, the graph structure aids in developing
efficient algorithms, as we will see. However, this book is not primarily about graphical models;
it is about probabilistic modeling in general.

A practical approach

Nearly all of the methods described in this book have been implemented in a MATLAB software
package called PMTK, which stands for probabilistic modeling toolkit. This is freely available
from pmtk3.googlecode.com (the digit 3 refers to the third edition of the toolkit, which is the
one used in this version of the book). There are also a variety of supporting files, written by other
people, available at pmtksupport.googlecode.com. These will be downloaded automatically,
if you follow the setup instructions described on the PMTK website.

MATLAB is a high-level, interactive scripting language ideally suited to numerical computation
and data visualization, and can be purchased from www.mathworks.com. Some of the code
requires the Statistics toolbox, which needs to be purchased separately. There is also a free
version of Matlab called Octave, available at http://www.gnu.org/software/octave/, which
supports most of the functionality of MATLAB. Some (but not all) of the code in this book also
works in Octave. See the PMTK website for details.

PMTK was used to generate many of the figures in this book; the source code for these figures
is included on the PMTK website, allowing the reader to easily see the effects of changing the
data or algorithm or parameter settings. The book refers to files by name, e.g., naiveBayesFit.
In order to find the corresponding file, you can use two methods: within Matlab you can type
which naiveBayesFit and it will return the full path to the file; or, if you do not have Matlab
but want to read the source code anyway, you can use your favorite search engine, which should
return the corresponding file from the pmtk3.googlecode.com website.

Details on how to use PMTK can be found on the website, which will be udpated over time.
Details on the underlying theory behind these methods can be found in this book.

Acknowledgments

A book this large is obviously a team effort. T would especially like to thank the following people:
my wife Margaret, for keeping the home fires burning as I toiled away in my office for the last six
years; Matt Dunham, who created many of the figures in this book, and who wrote much of the
code in PMTK; Baback Moghaddam, who gave extremely detailed feedback on every page of an
earlier draft of the book; Chris Williams, who also gave very detailed feedback; Cody Severinski
and Wei-Lwun Lu, who assisted with figures; generations of UBC students, who gave helpful
comments on earlier drafts; Daphne Koller, Nir Friedman, and Chris Manning, for letting me use
their latex style files; Stanford University, Google Research and Skyline College for hosting me
during part of my sabbatical; and various Canadian funding agencies (NSERC, CRC and CIFAR)
who have supported me financially over the years.

In addition, T would like to thank the following people for giving me helpful feedback on

Preface XXix

parts of the book, and/or for sharing figures, code, exercises or even (in some cases) text: David
Blei, Hannes Bretschneider, Greg Corrado, Arnaud Doucet, Mario Figueiredo, Nando de Freitas,
Mark Girolami, Gabriel Goh, Tom Griffiths, Katherine Heller, Geoff Hinton, Aapo Hyvarinen,
Tommi Jaakkola, Mike Jordan, Charles Kemp, Emtiyaz Khan, Bonnie Kirkpatrick, Daphne Koller,
Zico Kolter, Honglak Lee, Julien Mairal, Andrew McPherson, Tom Minka, Tan Nabney, Arthur
Pope, Carl Rassmussen, Ryan Rifkin, Ruslan Salakhutdinov, Mark Schmidt, Daniel Selsam, David
Sontag, Erik Sudderth, Josh Tenenbaum, Kai Yu, Martin Wainwright, Yair Weiss.

Kevin Patrick Murphy
Palo Alto, California
June 2012

11

Introduction

Machine learning: what and why?
We are drowning in information and starving for knowledge. — John Naisbitt.

We are entering the era of big data. For example, there are about 1 trillion web pages'; one
hour of video is uploaded to YouTube every second, amounting to 10 years of content every
day?; the genomes of 1000s of people, each of which has a length of 3.8 x 10° base pairs, have
been sequenced by various labs; Walmart handles more than 1M transactions per hour and has
databases containing more than 2.5 petabytes (2.5 x 10'%) of information (Cukier 2010); and so
on.

This deluge of data calls for automated methods of data analysis, which is what machine
learning provides. In particular, we define machine learning as a set of methods that can
automatically detect patterns in data, and then use the uncovered patterns to predict future
data, or to perform other kinds of decision making under uncertainty (such as planning how to
collect more data!).

This books adopts the view that the best way to solve such problems is to use the tools
of probability theory. Probability theory can be applied to any problem involving uncertainty.
In machine learning, uncertainty comes in many forms: what is the best prediction about the
future given some past data? what is the best model to explain some data? what measurement
should I perform next? etc. The probabilistic approach to machine learning is closely related to
the field of statistics, but differs slightly in terms of its emphasis and terminology”.

We will describe a wide variety of probabilistic models, suitable for a wide variety of data and
tasks. We will also describe a wide variety of algorithms for learning and using such models.
The goal is not to develop a cook book of ad hoc techiques, but instead to present a unified
view of the field through the lens of probabilistic modeling and inference. Although we will pay
attention to computational efficiency, details on how to scale these methods to truly massive
datasets are better described in other books, such as (Rajaraman and Ullman 2011; Bekkerman
et al. 2011).

L. http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

2. Source: http://wwu.youtube.com/t/press_statistics.

3. Rob Tibshirani, a statistician at Stanford university, has created an amusing comparison between machine learning
and statistics, available at http://www-stat.stanford.edu/~tibs/stat315a/glossary.pdf.

2 Chapter 1. Introduction

It should be noted, however, that even when one has an apparently massive data set, the
effective number of data points for certain cases of interest might be quite small. In fact, data
across a variety of domains exhibits a property known as the long tail, which means that a
few things (e.g., words) are very common, but most things are quite rare (see Section 2.4.6 for
details). For example, 20% of Google searches each day have never been seen before®. This
means that the core statistical issues that we discuss in this book, concerning generalizing from
relatively small samples sizes, are still very relevant even in the big data era.

Types of machine learning

Machine learning is usually divided into two main types. In the predictive or supervised
learning approach, the goal is to learn a mapping from inputs x to outputs ¥, given a labeled
set of input-output pairs D = {(x;,y;)}.,. Here D is called the training set, and N is the
number of training examples.

In the simplest setting, each training input x; is a D-dimensional vector of numbers, rep-
resenting, say, the height and weight of a person. These are called features, attributes or
covariates. In general, however, x; could be a complex structured object, such as an image, a
sentence, an email message, a time series, a molecular shape, a graph, etc.

Similarly the form of the output or response variable can in principle be anything, but
most methods assume that y; is a categorical or nominal variable from some finite set,
y; € {1,...,C} (such as male or female), or that y; is a real-valued scalar (such as income
level). When y; is categorical, the problem is known as classification or pattern recognition,
and when y; is real-valued, the problem is known as regression. Another variant, known as
ordinal regression, occurs where label space)’ has some natural ordering, such as grades A-F.

The second main type of machine learning is the descriptive or unsupervised learning
approach. Here we are only given inputs, D = {x;}¥ , and the goal is to find “interesting
patterns” in the data. This is sometimes called knowledge discovery. This is a much less
well-defined problem, since we are not told what kinds of patterns to look for, and there is no
obvious error metric to use (unlike supervised learning, where we can compare our prediction
of y for a given x to the observed value).

There is a third type of machine learning, known as reinforcement learning, which is
somewhat less commonly used. This is useful for learning how to act or behave when given
occasional reward or punishment signals. (For example, consider how a baby learns to walk.)
Unfortunately, RL is beyond the scope of this book, although we do discuss decision theory
in Section 5.7, which is the basis of RL. See e.g., (Kaelbling et al. 1996; Sutton and Barto 1998;
Russell and Norvig 2010; Szepesvari 2010; Wiering and van Otterlo 2012) for more information
on RL.

4.
http://certifiedknowledge.org/blog/are-search-queries-becoming-even-more-unique-statistic
s-from-google.

1.2

1.2.1

1.2.11

1.2. Supervised learning 3

yes no D features (attributes)
me o *‘ . Color Shape Size (cm) Label
@ ® @ ‘Ao . Blue Square 10 1
- e O = £l |Red Elipse 2.4 1
(2 ©72 =»? Red Elipse |20.7 0
(@ (b)

Figure L1 Left: Some labeled training examples of colored shapes, along with 3 unlabeled test cases.
Right: Representing the training data as an N x D design matrix. Row ¢ represents the feature vector x;.
The last column is the label, y; € {0, 1}. Based on a figure by Leslie Kaelbling.

Supervised learning

We begin our investigation of machine learning by discussing supervised learning, which is the
form of ML most widely used in practice.

Classification

In this section, we discuss classification. Here the goal is to learn a mapping from inputs x
to outputs y, where y € {1,...,C}, with C being the number of classes. If C' = 2, this is
called binary classification (in which case we often assume y € {0,1}); if C' > 2, this is called
multiclass classification. If the class labels are not mutually exclusive (e.g., somebody may be
classified as tall and strong), we call it multi-label classification, but this is best viewed as
predicting multiple related binary class labels (a so-called multiple output model). When we
use the term “classification”, we will mean multiclass classification with a single output, unless
we state otherwise.

One way to formalize the problem is as function approximation. We assume y = f(x) for
some unknown function f, and the goal of learning is to estimate the function f given a labeled
training set, and then to make predictions using § = f (x). (We use the hat symbol to denote
an estimate.) Our main goal is to make predictions on novel inputs, meaning ones that we have
not seen before (this is called generalization), since predicting the response on the training set
is easy (we can just look up the answer).

Example

As a simple toy example of classification, consider the problem illustrated in Figure 11(a). We
have two classes of object which correspond to labels 0 and 1. The inputs are colored shapes.
These have been described by a set of D features or attributes, which are stored in an N x D
design matrix X, shown in Figure L1(b). The input features x can be discrete, continuous or a
combination of the two. In addition to the inputs, we have a vector of training labels y.

In Figure 11, the test cases are a blue crescent, a yellow circle and a blue arrow. None of
these have been seen before. Thus we are required to generalize beyond the training set. A

1.2.1.2

4 Chapter 1. Introduction

reasonable guess is that blue crescent should be y = 1, since all blue shapes are labeled 1 in the
training set. The yellow circle is harder to classify, since some yellow things are labeled y = 1
and some are labeled y = 0, and some circles are labeled y = 1 and some y = 0. Consequently
it is not clear what the right label should be in the case of the yellow circle. Similarly, the correct
label for the blue arrow is unclear.

The need for probabilistic predictions

To handle ambiguous cases, such as the yellow circle above, it is desirable to return a probability.
The reader is assumed to already have some familiarity with basic concepts in probability. If
not, please consult Chapter 2 for a refresher, if necessary.

We will denote the probability distribution over possible labels, given the input vector x and
training set D by p(y|x, D). In general, this represents a vector of length C'. (If there are just two
classes, it is sufficient to return the single number p(y = 1|x, D), since p(y = 1|x, D) + p(y =
0|x,D) = 1) In our notation, we make explicit that the probability is conditional on the test
input x, as well as the training set D, by putting these terms on the right hand side of the
conditioning bar |. We are also implicitly conditioning on the form of model that we use to make
predictions. When choosing between different models, we will make this assumption explicit by
writing p(y|x, D, M), where M denotes the model. However, if the model is clear from context,
we will drop M from our notation for brevity.

Given a probabilistic output, we can always compute our “best guess” as to the “true label”
using

§=f(x)= argrcnaxp(y =¢|x,D) ((R))
c=1
This corresponds to the most probable class label, and is called the mode of the distribution
p(y|x, D); it is also known as a MAP estimate (MAP stands for maximum a posteriori). Using
the most probable label makes intuitive sense, but we will give a more formal justification for
this procedure in Section 5.7.

Now consider a case such as the yellow circle, where p(§|x, D) is far from L0. In such a
case we are not very confident of our answer, so it might be better to say “I don't know” instead
of returning an answer that we don't really trust. This is particularly important in domains
such as medicine and finance where we may be risk averse, as we explain in Section 5.7.
Another application where it is important to assess risk is when playing TV game shows, such
as Jeopardy. In this game, contestants have to solve various word puzzles and answer a variety
of trivia questions, but if they answer incorrectly, they lose money. In 2011, IBM unveiled a
computer system called Watson which beat the top human Jeopardy champion. Watson uses a
variety of interesting techniques (Ferrucci et al. 2010), but the most pertinent one for our present
purposes is that it contains a module that estimates how confident it is of its answer. The system
only chooses to “buzz in” its answer if sufficiently confident it is correct. Similarly, Google has a
system known as SmartASS (ad selection system) that predicts the probability you will click on
an ad based on your search history and other user and ad-specific features (Metz 2010). This
probability is known as the click-through rate or CTR, and can be used to maximize expected
profit. We will discuss some of the basic principles behind systems such as SmartASS later in
this book.

1.2.1.3

1.2. Supervised learning 5

documents

words

Figure 1.2 Subset of size 16242 x 100 of the 20-newsgroups data. We only show 1000 rows, for clarity.
Each row is a document (represented as a bag-of-words bit vector), each column is a word. The red
lines separate the 4 classes, which are (in descending order) comp, rec, sci, talk (these are the titles of
USENET groups). We can see that there are subsets of words whose presence or absence is indicative
of the class. The data is available from http://cs.nyu.edu/"roweis/data.html. Figure generated by
newsgroupsVisualize.

Real-world applications

Classification is probably the most widely used form of machine learning, and has been used
to solve many interesting and often difficult real-world problems. We have already mentioned
some important applciations. We give a few more examples below.

Document classification and email spam filtering

In document classification, the goal is to classify a document, such as a web page or email
message, into one of C' classes, that is, to compute p(y = ¢|x, D), where x is some represen-
tation of the text. A special case of this is email spam filtering, where the classes are spam
y =1 or ham y = 0.

Most classifiers assume that the input vector x has a fixed size. A common way to represent
variable-length documents in feature-vector format is to use a bag of words representation.
This is explained in detail in Section 3.4.4.1, but the basic idea is to define x;; = 1 iff word j
occurs in document i. If we apply this transformation to every document in our data set, we get
a binary document x word co-occurrence matrix: see Figure 1.2 for an example. Essentially the
document classification problem has been reduced to one that looks for subtle changes in the
pattern of bits. For example, we may notice that most spam messages have a high probability of
containing the words “buy”, “cheap”, “viagra”, etc. In Exercise 8.1 and Exercise 8.2, you will get
hands-on experience applying various classification techniques to the spam filtering problem.

6 Chapter 1. Introduction

Figure 1.3 Three types of iris flowers: setosa, versicolor and virginica. Source: http://www.statlab.u
ni-heidelberg.de/data/iris/ . Used with kind permission of Dennis Kramb and SIGNA.

sepal length sepal width petal length petal width
. - o
g2 . g s e
ot 3 s
E Ui R I o [
5 vt w’ ° f: 0. *- e’
& o H o
-

sepal width
F)
<%, 473
Py
N3
- .
het o
o
)
t
© gy
oo
g4
Pt
Suw.
Ay
hay
.
P

petal length
&,
E”
%
-
. o
Ex YR
FE
&

sty ok e o
= ks s =5
5 o Tl W \ f et =
LI R 2
h ni%'- ° -b:‘trv' 1*

Figure 1.4 Visualization of the Iris data as a pairwise scatter plot. The diagonal plots the marginal
histograms of the 4 features. The off diagonals contain scatterplots of all possible pairs of features. Red
circle = setosa, green diamond = versicolor, blue star = virginica. Figure generated by fisheririsDemo.

Classifying flowers

Figure 1.3 gives another example of classification, due to the statistician Ronald Fisher. The goal
is to learn to distinguish three different kinds of iris flower, called setosa, versicolor and virginica.
Fortunately, rather than working directly with images, a botanist has already extracted 4 useful
features or characteristics: sepal length and width, and petal length and width. (Such feature
extraction is an important, but difficult, task. Most machine learning methods use features
chosen by some human. Later we will discuss some methods that can learn good features from
the data.) If we make a scatter plot of the iris data, as in Figure 1.4, we see that it is easy to
distinguish setosas (red circles) from the other two classes by just checking if their petal length

1.2. Supervised learning 7

true class = 7 true class = 2 true class = 1 true class = 7 true class = 2 true class = 1

true class =0 true class = 4 true class =1 true class =0 true class = 4 true class = 1

true class = 4 true class =9 true class =5 true class = 4
e H

(@) (b)

true class =9 true class = 5
- T

Figure 1.5 (a) First 9 test MNIST gray-scale images. (b) Same as (a), but with the features permuted
randomly. Classification performance is identical on both versions of the data (assuming the training data
is permuted in an identical way). Figure generated by shuffledDigitsDemo.

or width is below some threshold. However, distinguishing versicolor from virginica is slightly
harder; any decision will need to be based on at least two features. (It is always a good idea
to perform exploratory data analysis, such as plotting the data, before applying a machine
learning method.)

Image classification and handwriting recognition

Now consider the harder problem of classifying images directly, where a human has not pre-
processed the data. We might want to classify the image as a whole, e.g., is it an indoors or
outdoors scene? is it a horizontal or vertical photo? does it contain a dog or not? This is called
image classification.

In the special case that the images consist of isolated handwritten letters and digits, for
example, in a postal or ZIP code on a letter, we can use classification to perform handwriting
recognition. A standard dataset used in this area is known as MNIST, which stands for “Modified
National Institute of Standards™. (The term “modified” is used because the images have been
preprocessed to ensure the digits are mostly in the center of the image.) This dataset contains
60,000 training images and 10,000 test images of the digits 0 to 9, as written by various people.
The images are size 28 x 28 and have grayscale values in the range 0 : 255. See Figure 1.5(a) for
some example images.

Many generic classification methods ignore any structure in the input features, such as spatial
layout. Consequently, they can also just as easily handle data that looks like Figure 1.5(b), which
is the same data except we have randomly permuted the order of all the features. (You will
verify this in Exercise 11) This flexibility is both a blessing (since the methods are general
purpose) and a curse (since the methods ignore an obviously useful source of information). We
will discuss methods for exploiting structure in the input features later in the book.

5. Available from http://yann.lecun.com/exdb/mnist/.

1.2.2

8 Chapter 1. Introduction

(@) (b)

Figure 1.6 Example of face detection. (a) Input image (Murphy family, photo taken 5 August 2010). Used
with kind permission of Bernard Diedrich of Sherwood Studios. (b) Output of classifier, which detected 5
faces at different poses. This was produced using the online demo at http://demo.pittpatt.com/. The
classifier was trained on 1000s of manually labeled images of faces and non-faces, and then was applied
to a dense set of overlapping patches in the test image. Only the patches whose probability of containing
a face was sufficiently high were returned. Used with kind permission of Pittpatt.com

Face detection and recognition

A harder problem is to find objects within an image; this is called object detection or object
localization. An important special case of this is face detection. One approach to this problem
is to divide the image into many small overlapping patches at different locations, scales and
orientations, and to classify each such patch based on whether it contains face-like texture or
not. This is called a sliding window detector. The system then returns those locations where
the probability of face is sufficiently high. See Figure 1.6 for an example. Such face detection
systems are built-in to most modern digital cameras; the locations of the detected faces are
used to determine the center of the auto-focus. Another application is automatically blurring
out faces in Google'’s StreetView system.

Having found the faces, one can then proceed to perform face recognition, which means
estimating the identity of the person (see Figure 1.10(a)). In this case, the number of class labels
might be very large. Also, the features one should use are likely to be different than in the face
detection problem: for recognition, subtle differences between faces such as hairstyle may be
important for determining identity, but for detection, it is important to be invariant to such
details, and to just focus on the differences between faces and non-faces. For more information
about visual object detection, see e.g., (Szeliski 2010).

Regression

Regression is just like classification except the response variable is continuous. Figure 1.7 shows
a simple example: we have a single real-valued input z; € R, and a single real-valued response
yi € R. We consider fitting two models to the data: a straight line and a quadratic function.
(We explain how to fit such models below.) Various extensions of this basic problem can arise,
such as having high-dimensional inputs, outliers, non-smooth responses, etc. We will discuss
ways to handle such problems later in the book.

1.3

1.3. Unsupervised learning 9

degree 1 degree 2

Figure 1.7 (a) Linear regression on some 1d data. (b) Same data with polynomial regression (degree 2).
Figure generated by linregPolyVsDegree.

Here are some examples of real-world regression problems.

e Predict tomorrow’s stock market price given current market conditions and other possible
side information.

e Predict the age of a viewer watching a given video on YouTube.

e Predict the location in 3d space of a robot arm end effector, given control signals (torques)
sent to its various motors.

e Predict the amount of prostate specific antigen (PSA) in the body as a function of a number
of different clinical measurements.

e Predict the temperature at any location inside a building using weather data, time, door
sensors, etc.

Unsupervised learning

We now consider unsupervised learning, where we are just given output data, without any
inputs. The goal is to discover “interesting structure” in the data; this is sometimes called
knowledge discovery. Unlike supervised learning, we are not told what the desired output is
for each input. Instead, we will formalize our task as one of density estimation, that is, we
want to build models of the form p(x;|@). There are two differences from the supervised case.
First, we have written p(x;|0) instead of p(y;|x;, 0); that is, supervised learning is conditional
density estimation, whereas unsupervised learning is unconditional density estimation. Second,
x; is a vector of features, so we need to create multivariate probability models. By contrast,
in supervised learning, y; is usually just a single variable that we are trying to predict. This
means that for most supervised learning problems, we can use univariate probability models
(with input-dependent parameters), which significantly simplifies the problem. (We will discuss
multi-output classification in Chapter 19, where we will see that it also involves multivariate
probability models.)

Unsupervised learning is arguably more typical of human and animal learning. Tt is also
more widely applicable than supervised learning, since it does not require a human expert to

1.3.1

10 Chapter 1. Introduction

K=2

weight
2
8

weight
8

[e)e)

Figure 1.8 (a) The height and weight of some people. (b) A possible clustering using X = 2 clusters.
Figure generated by kmeansHeightWeight.

manually label the data. Labeled data is not only expensive to acquire®, but it also contains
relatively little information, certainly not enough to reliably estimate the parameters of complex
models. Geoff Hinton, who is a famous professor of ML at the University of Toronto, has said:

When we're learning to see, nobody’s telling us what the right answers are — we just
look. Every so often, your mother says “that’s a dog”, but that's very little information.
You'd be lucky if you got a few bits of information — even one bit per second — that
way. The brain’s visual system has 10'* neural connections. And you only live for 10°
seconds. So it's no use learning one bit per second. You need more like 10 bits per
second. And there’s only one place you can get that much information: from the input
itself. — Geoffrey Hinton, 1996 (quoted in (Gorder 2006)).

Below we describe some canonical examples of unsupervised learning.

Discovering clusters

As a canonical example of unsupervised learning, consider the problem of clustering data into
groups. For example, Figure 1.8(a) plots some 2d data, representing the height and weight of
a group of 210 people. It seems that there might be various clusters, or subgroups, although
it is not clear how many. Let K denote the number of clusters. Our first goal is to estimate
the distribution over the number of clusters, p(K|D); this tells us if there are subpopulations
within the data. For simplicity, we often approximate the distribution p(K|D) by its mode,
K* = argmaxy p(K|D). In the supervised case, we were told that there are two classes (male
and female), but in the unsupervised case, we are free to choose as many or few clusters as we
like. Picking a model of the “right” complexity is called model selection, and will be discussed
in detail below.

Our second goal is to estimate which cluster each point belongs to. Let z; € {1,..., K}
represent the cluster to which data point 7 is assigned. (z; is an example of a hidden or

6. The advent of crowd sourcing web sites such as Mechanical Turk, (https://www.mturk.com/mturk/welcome),
which outsource data processing tasks to humans all over the world, has reduced the cost of labeling data. Nevertheless,
the amount of unlabeled data is still orders of magnitude larger than the amount of labeled data.

1.3.2

1.3. Unsupervised learning il

Figure 1.9 (a) A set of points that live on a 2d linear subspace embedded in 3d. The solid red line is the
first principal component direction. The dotted black line is the second PC direction. (b) 2D representation
of the data. Figure generated by pcaDemo3d.

latent variable, since it is never observed in the training set.) We can infer which cluster each
data point belongs to by computing z = argmax; p(z; = k|x;, D). This is illustrated in
Figure 1.8(b), where we use different colors to indicate the assignments, assuming K = 2.

In this book, we focus on model based clustering, which means we fit a probabilistic model
to the data, rather than running some ad hoc algorithm. The advantages of the model-based
approach are that one can compare different kinds of models in an objective way (in terms of
the likelihood they assign to the data), we can combine them together into larger systems, etc.

Here are some real world applications of clustering.

e In astronomy, the autoclass system (Cheeseman et al. 1988) discovered a new type of star,
based on clustering astrophysical measurements.

e In e-commerce, it is common to cluster users into groups, based on their purchasing or
web-surfing behavior, and then to send customized targeted advertising to each group (see
e.g., (Berkhin 2006)).

e In biology, it is common to cluster flow-cytometry data into groups, to discover different
sub-populations of cells (see e.g., (Lo et al. 2009)).

Discovering latent factors

When dealing with high dimensional data, it is often useful to reduce the dimensionality by
projecting the data to a lower dimensional subspace which captures the “essence” of the data.
This is called dimensionality reduction. A simple example is shown in Figure 1.9, where we
project some 3d data down to a 2d plane. The 2d approximation is quite good, since most points
lie close to this subspace. Reducing to 1d would involve projecting points onto the red line in
Figure 1.9(a); this would be a rather poor approximation. (We will make this notion precise in
Chapter 12.)

The motivation behind this technique is that although the data may appear high dimensional,
there may only be a small number of degrees of variability, corresponding to latent factors. For
example, when modeling the appearance of face images, there may only be a few underlying
latent factors which describe most of the variability, such as lighting, pose, identity, etc, as
illustrated in Figure 1.10.

12 Chapter 1. Introduction

mean principal basis 1

ol I
"

principal basis 2 principal basis 3

(b)

Figure 1.10 a) 25 randomly chosen 64 x 64 pixel images from the Olivetti face database. (b) The mean
and the first three principal component basis vectors (eigenfaces). Figure generated by pcaImageDemo.

When used as input to other statistical models, such low dimensional representations often
result in better predictive accuracy, because they focus on the “essence” of the object, filtering
out inessential features. Also, low dimensional representations are useful for enabling fast
nearest neighbor searches and two dimensional projections are very useful for visualizing high
dimensional data.

The most common approach to dimensionality reduction is called principal components
analysis or PCA. This can be thought of as an unsupervised version of (multi-output) linear
regression, where we observe the high-dimensional response y, but not the low-dimensional
“cause” z. Thus the model has the form z — y; we have to “invert the arrow”, and infer the
latent low-dimensional z from the observed high-dimensional y. See Section 12.1 for details.

Dimensionality reduction, and PCA in particular, has been applied in many different areas.
Some examples include the following:

e In biology, it is common to use PCA to interpret gene microarray data, to account for the
fact that each measurement is usually the result of many genes which are correlated in their
behavior by the fact that they belong to different biological pathways.

e In natural language processing, it is common to use a variant of PCA called latent semantic
analysis for document retrieval (see Section 27.2.2).

e In signal processing (e.g., of acoustic or neural signals), it is common to use ICA (which is a
variant of PCA) to separate signals into their different sources (see Section 12.6).

e In computer graphics, it is common to project motion capture data to a low dimensional
space, and use it to create animations. See Section 15.5 for one way to tackle such problems.

1.3.3

1.3. Unsupervised learning 13

Figure 1.11 A sparse undirected Gaussian graphical model learned using graphical lasso (Section 26.7.2)
applied to some flow cytometry data (from (Sachs et al. 2005)), which measures the phosphorylation status
of 11 proteins. Figure generated by ggmLassoDemo.

Discovering graph structure

Sometimes we measure a set of correlated variables, and we would like to discover which ones
are most correlated with which others. This can be represented by a graph G, in which nodes
represent variables, and edges represent direct dependence between variables (we will make
this precise in Chapter 10, when we discuss graphical models). We can then learn this graph
structure from data, i.e., we compute ¢ = argmax p(G|D).

As with unsupervised learning in general, there are two main applications for learning sparse
graphs: to discover new knowledge, and to get better joint probability density estimators. We
now give somes example of each.

* Much of the motivation for learning sparse graphical models comes from the systems biology
community. For example, suppose we measure the phosphorylation status of some proteins
in a cell (Sachs et al. 2005). Figure 1.11 gives an example of a graph structure that was learned
from this data (using methods discussed in Section 26.7.2). As another example, Smith et al.
(2006) showed that one can recover the neural “wiring diagram” of a certain kind of bird
from time-series EEG data. The recovered structure closely matched the known functional
connectivity of this part of the bird brain.

e In some cases, we are not interested in interpreting the graph structure, we just want to
use it to model correlations and to make predictions. One example of this is in financial
portfolio management, where accurate models of the covariance between large numbers of
different stocks is important. Carvalho and West (2007) show that by learning a sparse graph,
and then using this as the basis of a trading strategy, it is possible to outperform (i.e., make
more money than) methods that do not exploit sparse graphs. Another example is predicting
traffic jams on the freeway. Horvitz et al. (2005) describe a deployed system called JamBayes
for predicting traffic flow in the Seattle area; predictions are made using a graphical model
whose structure was learned from data.

1.3.4

1.3.4.1

1.3.4.2

14 Chapter 1. Introduction

() (b)

Figure 112 (a) A noisy image with an occluder. (b) An estimate of the underlying pixel intensities, based
on a pairwise MRF model. Source: Figure 8 of (Felzenszwalb and Huttenlocher 2006). Used with kind
permission of Pedro Felzenszwalb.

Matrix completion

Sometimes we have missing data, that is, variables whose values are unknown. For example, we
might have conducted a survey, and some people might not have answered certain questions.
Or we might have various sensors, some of which fail. The corresponding design matrix will
then have “holes” in it; these missing entries are often represented by NaN, which stands for
“not a number”. The goal of imputation is to infer plausible values for the missing entries. This
is sometimes called matrix completion. Below we give some example applications.

Image inpainting

An interesting example of an imputation-like task is known as image inpainting. The goal is
to “fill in” holes (e.g., due to scratches or occlusions) in an image with realistic texture. This is
illustrated in Figure 1.12, where we denoise the image, as well as impute the pixels hidden behind
the occlusion. This can be tackled by building a joint probability model of the pixels, given a
set of clean images, and then inferring the unknown variables (pixels) given the known variables
(pixels). This is somewhat like masket basket analysis, except the data is real-valued and spatially
structured, so the kinds of probability models we use are quite different. See Sections 19.6.2.7
and 13.8.4 for some possible choices.

Collaborative filtering

Another interesting example of an imputation-like task is known as collaborative filtering. A
common example of this concerns predicting which movies people will want to watch based
on how they, and other people, have rated movies which they have already seen. The key idea
is that the prediction is not based on features of the movie or user (although it could be), but
merely on a ratings matrix. More precisely, we have a matrix X where X (m,w) is the rating

1.3.4.3

1.3. Unsupervised learning 15

—
N
)
w
(&)}
)

movies | ? 1

NN

Figure 1.13 Example of movie-rating data. Training data is in red, test data is denoted by ?, empty cells
are unknown.

(say an integer between 1 and 5, where 1 is dislike and 5 is like) by user u of movie m. Note
that most of the entries in X will be missing or unknown, since most users will not have rated
most movies. Hence we only observe a tiny subset of the X matrix, and we want to predict
a different subset. In particular, for any given user u, we might want to predict which of the
unrated movies he/she is most likely to want to watch.

In order to encourage research in this area, the DVD rental company Netflix created a com-
petition, launched in 2006, with a $IM USD prize (see http://netflixprize.com/). In
particular, they provided a large matrix of ratings, on a scale of 1 to 5, for ~ 18k movies
created by ~ 500k users. The full matrix would have ~ 9 x 10° entries, but only about 1%
of the entries are observed, so the matrix is extremely sparse. A subset of these are used for
training, and the rest for testing, as shown in Figure 1.13. The goal of the competition was to
predict more accurately than Netflix’s existing system. On 21 September 2009, the prize was
awarded to a team of researchers known as “BellKor’s Pragmatic Chaos”. Section 27.6.2 discusses
some of their methodology. Further details on the teams and their methods can be found at
http://wuw.netflixprize.com/community/viewtopic.php?id=1537.

Market basket analysis

In commercial data mining, there is much interest in a task called market basket analysis. The
data consists of a (typically very large but sparse) binary matrix, where each column represents
an item or product, and each row represents a transaction. We set z;; = 1 if item j was
purchased on the 7'th transaction. Many items are purchased together (e.g., bread and butter),
so there will be correlations amongst the bits. Given a new partially observed bit vector,
representing a subset of items that the consumer has bought, the goal is to predict which other
bits are likely to turn on, representing other items the consumer might be likely to buy. (Unlike
collaborative filtering, we often assume there is no missing data in the training data, since we
know the past shopping behavior of each customer.)

This task arises in other domains besides modeling purchasing patterns. For example, similar
techniques can be used to model dependencies between files in complex software systems. In
this case, the task is to predict, given a subset of files that have been changed, which other ones
need to be updated to ensure consistency (see e.g., (Hu et al. 2010)).

It is common to solve such tasks using frequent itemset mining, which create association
rules (see e.g., (Hastie et al. 2009, sec 14.2) for details). Alternatively, we can adopt a probabilistic
approach, and fit a joint density model p(x1,...,2p) to the bit vectors, see e.g., (Hu et al.

1.4

1.4.1

1.4.2

16 Chapter 1. Introduction

(@) (b)

Figure 114 (a) lllustration of a K -nearest neighbors classifier in 2d for K = 3. The 3 nearest neighbors
of test point x1 have labels 1, 1 and 0, so we predict p(y = 1|x1,D, K = 3) = 2/3. The 3 nearest
neighbors of test point x> have labels 0, 0, and 0, so we predict p(y = 1|x2,D, K = 3) = 0/3. (b)
Hlustration of the Voronoi tesselation induced by 1-NN. Based on Figure 4.13 of (Duda et al. 2001). Figure
generated by knnVoronoi.

2010). Such models often have better predictive acccuracy than association rules, although they
may be less interpretible. This is typical of the difference between data mining and machine
learning: in data mining, there is more emphasis on interpretable models, whereas in machine
learning, there is more emphasis on accurate models.

Some basic concepts in machine learning

In this Section, we provide an introduction to some key ideas in machine learning. We will
expand on these concepts later in the book, but we introduce them briefly here, to give a flavor
of things to come.

Parametric vs non-parametric models

In this book, we will be focussing on probabilistic models of the form p(y|x) or p(x), depending
on whether we are interested in supervised or unsupervised learning respectively. There are
many ways to define such models, but the most important distinction is this: does the model
have a fixed number of parameters, or does the number of parameters grow with the amount
of training data? The former is called a parametric model, and the latter is called a non-
parametric model. Parametric models have the advantage of often being faster to use, but the
disadvantage of making stronger assumptions about the nature of the data distributions. Non-
parametric models are more flexible, but often computationally intractable for large datasets.
We will give examples of both kinds of models in the sections below. We focus on supervised
learning for simplicity, although much of our discussion also applies to unsupervised learning.

A simple non-parametric classifier: K -nearest neighbors

A simple example of a non-parametric classifier is the K nearest neighbor (KNN) classifier.
This simply “looks at” the K points in the training set that are nearest to the test input x,

14. Some basic concepts in machine learning 17

train ‘ p(y=1|data,K=10)
T T + w# T 1
5 +
4 + |
X o+ T + 0.9
4 +>< + ++ ><4++# 08
J < x| X f;@#i +§E 07
K *x +>>§r l ﬁ
XD % pa 06
2 DETEE BTSN + T
XX X X ><>§g%< % 0.5
1 %i& %XX * X;K 04
9 xR, TR '
K * %@K * 0.2
-r %* egﬁ% * *
* * % * 0.1
—2 Nﬁ L 0
3 2 1 0 1 2 3

p(y=2|data,K=10) predicted label, K=10

20 40 60 80 100

(© (d)

Figure 1.15 (a) Some synthetic 3-class training data in 2d. (b) Probability of class 1 for KNN with K = 10.
(c) Probability of class 2. (d) MAP estimate of class label. Figure generated by knnClassifyDemo.

counts how many members of each class are in this set, and returns that empirical fraction as
the estimate, as illustrated in Figure 1.14. More formally,

1
py=cxDK)=72 > Ily=c) (12)
1€Nk (x,D)

where Nk (x, D) are the (indices of the) K nearest points to x in D and I(e) is the indicator
function defined as follows:

1 if eis true
I(e) = { 0 if e is false 1.3)

This method is an example of memory-based learning or instance-based learning. It can
be derived from a probabilistic framework as explained in Section 14.7.3. The most common

1.4.3

18 Chapter 1. Introduction

-

Edge length of cube

1 0 0.2 0.4 0.6 0.8 1
Fraction of data in neighborhood

(@) (b)

Figure 1.16 Illustration of the curse of dimensionality. (a) We embed a small cube of side s inside a larger
unit cube. (b) We plot the edge length of a cube needed to cover a given volume of the unit cube as a
function of the number of dimensions. Based on Figure 2.6 from (Hastie et al. 2009). Figure generated by
curseDimensionality.

distance metric to use is Euclidean distance (which limits the applicability of the technique to
data which is real-valued), although other metrics can be used.

Figure 1.15 gives an example of the method in action, where the input is two dimensional, we
have three classes, and K = 10. (We discuss the effect of K below.) Panel (a) plots the training
data. Panel (b) plots p(y = 1|x,D) where x is evaluated on a grid of points. Panel (c) plots
p(y = 2|x,D). We do not need to plot p(y = 3|x, D), since probabilities sum to one. Panel (d)
plots the MAP estimate §j(x) = argmax_(y = c|x, D).

A KNN classifier with K = 1 induces a Voronoi tessellation of the points (see Figure 1.14(b)).
This is a partition of space which associates a region V' (x;) with each point x; in such a way
that all points in V' (x;) are closer to x; than to any other point. Within each cell, the predicted
label is the label of the corresponding training point.

The curse of dimensionality

The KNN classifier is simple and can work quite well, provided it is given a good distance metric
and has enough labeled training data. In fact, it can be shown that the KNN classifier can come
within a factor of 2 of the best possible performance if N — oo (Cover and Hart 1967).

However, the main problem with KNN classifiers is that they do not work well with high
dimensional inputs. The poor performance in high dimensional settings is due to the curse of
dimensionality.

To explain the curse, we give some examples from (Hastie et al. 2009, p22). Consider applying
a KNN classifier to data where the inputs are uniformly distributed in the D-dimensional unit
cube. Suppose we estimate the density of class labels around a test point x by “growing” a
hyper-cube around x until it contains a desired fraction f of the data points. The expected edge
length of this cube will be ep(f) = f1/P. If D = 10, and we want to base our estimate on 10%

1.4.4

1.4.5

14. Some basic concepts in machine learning 19

(@) (b)

Figure 117 (a) A Gaussian pdf with mean 0 and variance 1. Figure generated by gaussPlotDemo. (b)
Visualization of the conditional density model p(y|z,0) = N (y|lwo + wix,0?). The density falls off
exponentially fast as we move away from the regression line. Figure generated by 1inregWedgeDemo?2.

of the data, we have e1¢(0.1) = 0.8, so we need to extend the cube 80% along each dimension
around x. Even if we only use 1% of the data, we find €;¢(0.01) = 0.63: see Figure 1.16. Since
the entire range of the data is only 1 along each dimension, we see that the method is no longer
very local, despite the name “nearest neighbor”. The trouble with looking at neighbors that are
so far away is that they may not be good predictors about the behavior of the input-output
function at a given point.

Parametric models for classification and regression

The main way to combat the curse of dimensionality is to make some assumptions about
the nature of the data distribution (either p(y|x) for a supervised problem or p(x) for an
unsupervised problem). These assumptions, known as inductive bias, are often embodied in
the form of a parametric model, which is a statistical model with a fixed number of parameters.
Below we briefly describe two widely used examples; we will revisit these and other models in
much greater depth later in the book.

Linear regression

One of the most widely used models for regression is known as linear regression. This asserts
that the response is a linear function of the inputs. This can be written as follows:

D
y(x) = wlix+e= Z w;T; + € 1.4)
j=1
where w”'x represents the inner or scalar product between the input vector x and the model’s

weight vector w’, and ¢ is the residual error between our linear predictions and the true
response.

7. In statistics, it is more common to denote the regression weights by 3.

20 Chapter 1. Introduction

degree 14 degree 20

Figure 1.18 Polynomial of degrees 14 and 20 fit by least squares to 21 data points. Figure generated by
linregPolyVsDegree.

We often assume that ¢ has a Gaussian® or normal distribution. We denote this by € ~

N (1, 02), where 1 is the mean and o2 is the variance (see Chapter 2 for details). When we plot
this distribution, we get the well-known bell curve shown in Figure 1.17(a).

To make the connection between linear regression and Gaussians more explicit, we can rewrite
the model in the following form:

p(ylx,) = N(y|u(x), 0 (x)) 15)

This makes it clear that the model is a conditional probability density. In the simplest case, we
assume 4 is a linear function of x, so y = w’x, and that the noise is fixed, 02(x) = 0. In
this case, @ = (w, 0?) are the parameters of the model.

For example, suppose the input is 1 dimensional. We can represent the expected response as
follows:

w(x) = wo +wix = wlx (L.6)
where wy is the intercept or bias term, w; is the slope, and where we have defined the vector
x = (1, z). (Prepending a constant 1 term to an input vector is a common notational trick which
allows us to combine the intercept term with the other terms in the model.) If w; is positive,
it means we expect the output to increase as the input increases. This is illustrated in 1d in
Figure 1.17(b); a more conventional plot, of the mean response vs z, is shown in Figure 1.7(a).

Linear regression can be made to model non-linear relationships by replacing x with some
non-linear function of the inputs, ¢(x). That is, we use

pylx,0) = N (ylw" $(x),0?) 7)
This is known as basis function expansion. For example, Figure 1.18 illustrates the case where
o(x) = [1,2,2%,...,2%, for d = 14 and d = 20; this is known as polynomial regression.

We will consider other kinds of basis functions later in the book. In fact, many popular
machine learning methods — such as support vector machines, neural networks, classification
and regression trees, etc. — can be seen as just different ways of estimating basis functions
from data, as we discuss in Chapters 14 and 16.

8. Carl Friedrich Gauss (1777-1855) was a German mathematician and physicist.

1.4.6

14. Some basic concepts in machine learning 21

1 o GNe @®es o LB
0.9

0.9 q
0.8 0.8 7]
07 07
06 06 8

05 05
0.4 04
03
02

0.1

(o]
o @9 e ezie o o
460 480 500 520 540 560 580 600 620 640

(@) (b)

10 -5 0 5 10

Figure 1.19 (a) The sigmoid or logistic function. We have sigm(—o0) = 0, sigm(0) = 0.5, and
sigm(oo) = 1. Figure generated by sigmoidPlot. (b) Logistic regression for SAT scores. Solid black dots
are the data. The open red circles are the predicted probabilities. The green crosses denote two students
with the same SAT score of 525 (and hence same input representation x) but with different training labels
(one student passed, y = 1, the other failed, y = 0). Hence this data is not perfectly separable using just
the SAT feature. Figure generated by logregSATdemo.

Logistic regression

We can generalize linear regression to the (binary) classification setting by making two changes.
First we replace the Gaussian distribution for 3 with a Bernoulli distribution® which is more
appropriate for the case when the response is binary, y € {0,1}. That is, we use

p(ylx, w) = Ber(y|u(x)) 1.8)

where p(x) = E [y|x] = p(y = 1]x). Second, we compute a linear combination of the inputs,
as before, but then we pass this through a function that ensures 0 < p(x) < 1 by defining

w(x) = sigm(w?x) 1.9)
where sigm(n) refers to the sigmoid function, also known as the logistic or logit function.
This is defined as
1 e'l

=) (1.10)

sigm(n) =

1+ exp(—n)
The term “sigmoid” means S-shaped: see Figure 1.19(a) for a plot. It is also known as a squashing
function, since it maps the whole real line to [0, 1], which is necessary for the output to be
interpreted as a probability.

Putting these two steps together we get
p(y|x, w) = Ber(y|sigm(w’x)) 11

This is called logistic regression due to its similarity to linear regression (although it is a form
of classification, not regression!).

9. Daniel Bernoulli (1700-1782) was a Dutch-Swiss mathematician and physicist.

1.4.7

1.4.8

22 Chapter 1. Introduction

A simple example of logistic regression is shown in Figure 1.19(b), where we plot
p(y; = lz;, w) = sigm(wp + wyx;) 112)

where x; is the SAT' score of student i and y; is whether they passed or failed a class. The
solid black dots show the training data, and the red circles plot p(y = 1|x;, W), where W are
the parameters estimated from the training data (we discuss how to compute these estimates in
Section 8.3.4).

If we threshold the output probability at 0.5, we can induce a decision rule of the form

gx) =1 <= p(y=1]x) > 0.5 (113)

By looking at Figure 1.19(b), we see that sigm(wo + wix) = 0.5 for z ~ 545 = x*. We can
imagine drawing a vertical line at x = z*; this is known as a decision boundary. Everything to
the left of this line is classified as a 0, and everything to the right of the line is classified as a 1.

We notice that this decision rule has a non-zero error rate even on the training set. This
is because the data is not linearly separable, i.e., there is no straight line we can draw to
separate the Os from the 1s. We can create models with non-linear decision boundaries using
basis function expansion, just as we did with non-linear regression. We will see many examples
of this later in the book.

Overfitting

When we fit highly flexible models, we need to be careful that we do not overfit the data, that
is, we should avoid trying to model every minor variation in the input, since this is more likely
to be noise than true signal. This is illustrated in Figure 1.18(b), where we see that using a high
degree polynomial results in a curve that is very “wiggly”. It is unlikely that the true function
has such extreme oscillations. Thus using such a model might result in accurate predictions of
future outputs.

As another example, consider the KNN classifier. The value of K can have a large effect on
the behavior of this model. When K = 1, the method makes no errors on the training set (since
we just return the labels of the original training points), but the resulting prediction surface is
very “wiggly” (see Figure 1.20(a)). Therefore the method may not work well at predicting future
data. In Figure 1.20(b), we see that using K = 5 results in a smoother prediction surface,
because we are averaging over a larger neighborhood. As K increases, the predictions becomes
smoother until, in the limit of X' = N, we end up predicting the majority label of the whole
data set. Below we discuss how to pick the “right” value of K.

Model selection

When we have a variety of models of different complexity (e.g., linear or logistic regression
models with different degree polynomials, or KNN classifiers with different values of K), how
should we pick the right one? A natural approach is to compute the misclassification rate on

10. SAT stands for “Scholastic Aptitude Test”. This is a standardized test for college admissions used in the United States
(the data in this example is from (Johnson and Albert 1999, p87)).

14. Some basic concepts in machine learning 23

Figure 1.20 Prediction surface for KNN on the data in Figure 1.15(a). (a) K=1. (b) K=5. Figure generated by
knnClassifyDemo.

the training set for each method. This is defined as follows:

N
en(£,D) = - ST/ (x0) # i) 01
i=1

where f(x) is our classifier. In Figure 1.21(a), we plot this error rate vs K for a KNN classifier
(dotted blue line). We see that increasing K increases our error rate on the training set, because
we are over-smoothing. As we said above, we can get minimal error on the training set by using
K =1, since this model is just memorizing the data.

However, what we care about is generalization error, which is the expected value of the
misclassification rate when averaged over future data (see Section 6.3 for details). This can be
approximated by computing the misclassification rate on a large independent test sef, not used
during model training. We plot the test error vs K in Figure 1.21(a) in solid red (upper curve).
Now we see a U-shaped curve: for complex models (small K), the method overfits, and for
simple models (big K), the method underfits. Therefore, an obvious way to pick K is to pick
the value with the minimum error on the test set (in this example, any value between 10 and
100 should be fine).

Unfortunately, when training the model, we don’t have access to the test set (by assumption),
so we cannot use the test set to pick the model of the right complexity.! However, we can create
a test set by partitioning the training set into two: the part used for training the model, and a
second part, called the validation set, used for selecting the model complexity. We then fit all
the models on the training set, and evaluate their performance on the validation set, and pick
the best. Once we have picked the best, we can refit it to all the available data. If we have a
separate test set, we can evaluate performance on this, in order to estimate the accuracy of our
method. (We discuss this in more detail in Section 6.5.3.)

Often we use about 80% of the data for the training set, and 20% for the validation set. But
if the number of training cases is small, this technique runs into problems, because the model

1. In academic settings, we usually do have access to the test set, but we should not use it for model fitting or model
selection, otherwise we will get an unrealistically optimistic estimate of performance of our method. This is one of the
“golden rules” of machine learning research.

1.4.9

24 Chapter 1. Introduction

0 - - - - -
;
[+ test
| B [[[-
. ———
c O
£ o2]
g o
foq " ; [T T] e
Zost 4
3
LT T T e
0.05-
T T T T~
20 40 6 80 100 120
(a) (b)

Figure 1.21 (a) Misclassification rate vs K in a K-nearest neighbor classifier. On the left, where K is
small, the model is complex and hence we overfit. On the right, where K is large, the model is simple
and we underfit. Dotted blue line: training set (size 200). Solid red line: test set (size 500). (b) Schematic
of 5-fold cross validation. Figure generated by knnClassifyDemo.

won't have enough data to train on, and we won't have enough data to make a reliable estimate
of the future performance.

A simple but popular solution to this is to use cross validation (CV). The idea is simple: we
split the training data into K folds; then, for each fold k € {1,..., K}, we train on all the
folds but the £'th, and test on the k’th, in a round-robin fashion, as sketched in Figure 1.21(b).
We then compute the error averaged over all the folds, and use this as a proxy for the test error.
(Note that each point gets predicted only once, although it will be used for training K —1 times.)
It is common to use K = 5; this is called 5-fold CV. If we set K = N, then we get a method
called leave-one out cross validation, or LOOCV, since in fold 7, we train on all the data cases
except for 7, and then test on ¢. Exercise 1.3 asks you to compute the 5-fold CV estimate of the
test error vs K, and to compare it to the empirical test error in Figure 1.21(a).

Choosing K for a KNN classifier is a special case of a more general problem known as model
selection, where we have to choose between models with different degrees of flexibility. Cross-
validation is widely used for solving such problems, although we will discuss other approaches
later in the book.

No free lunch theorem

All models are wrong, but some models are useful. — George Box (Box and Draper 1987,
p424).12

Much of machine learning is concerned with devising different models, and different algorithms
to fit them. We can use methods such as cross validation to empirically choose the best method
for our particular problem. However, there is no universally best model — this is sometimes
called the no free lunch theorem (Wolpert 1996). The reason for this is that a set of assumptions
that works well in one domain may work poorly in another.

12. George Box is a retired statistics professor at the University of Wisconsin.

14. Some basic concepts in machine learning 25

As a consequence of the no free lunch theorem, we need to develop many different types of
models, to cover the wide variety of data that occurs in the real world. And for each model,
there may be many different algorithms we can use to train the model, which make different
speed-accuracy-complexity tradeoffs. It is this combination of data, models and algorithms that
we will be studying in the subsequent chapters.

Exercises

Exercise 1.1 KNN classifier on shuffled MNIST data

Run mnist1NNdemo and verify that the misclassification rate (on the first 1000 test cases) of MNIST of a
I-NN classifier is 3.8%. (If you run it all on all 10,000 test cases, the error rate is 3.09%.) Modify the code
so that you first randomly permute the features (columns of the training and test design matrices), as in
shuffledDigitsDemo, and then apply the classifier. Verify that the error rate is not changed.

Exercise 1.2 Approximate KNN classifiers

Use the Matlab/C++ code at http://people.cs.ubc.ca/ mariusm/index.php/FLANN/FLANN to per-
form approximate nearest neighbor search, and combine it with mnist1NNdemo to classify the MNIST data
set. How much speedup do you get, and what is the drop (if any) in accuracy?

Exercise 1.3 CV for KNN

Use knnClassifyDemo to plot the CV estimate of the misclassification rate on the test set. Compare this
to Figure 1.21(a). Discuss the similarities and differences to the test error rate.

2.1

Probability

Introduction

Probability theory is nothing but common sense reduced to calculation. — Pierre Laplace,
1812

In the previous chapter, we saw how probability can play a useful role in machine learning. In
this chapter, we discuss probability theory in more detail. We do not have to space to go into
great detail — for that, you are better off consulting some of the excellent textbooks available
on this topic, such as (Jaynes 2003; Bertsekas and Tsitsiklis 2008; Wasserman 2004). But we will
briefly review many of the key ideas you will need in later chapters.

Before we start with the more technical material, let us pause and ask: what is probability?
We are all familiar with the phrase “the probability that a coin will land heads is 0.5”. But what
does this mean? There are actually at least two different interpretations of probability. One is
called the frequentist interpretation. In this view, probabilities represent long run frequencies
of events. For example, the above statement means that, if we flip the coin many times, we
expect it to land heads about half the time.!

The other interpretation is called the Bayesian interpretation of probability. In this view,
probability is used to quantify our uncertainty about something; hence it is fundamentally
related to information rather than repeated trials (Jaynes 2003). In the Bayesian view, the above
statement means we believe the coin is equally likely to land heads or tails on the next toss.

One big advantage of the Bayesian interpretation is that it can be used to model our uncer-
tainty about events that do not have long term frequencies. For example, we might want to
compute the probability that the polar ice cap will melt by 2020 CE. This event will happen zero
or one times, but cannot happen repeatedly. Nevertheless, we ought to be able to quantify our
uncertainty about this event; based on how probable we think this event is, we will (hopefully!)
take appropriate actions (see Section 5.7 for a discussion of optimal decision making under
uncertainty). To give some more machine learning oriented examples, we might have received
a specific email message, and want to compute the probability it is spam. Or we might have
observed a “blip” on our radar screen, and want to compute the probability distribution over
the location of the corresponding target (be it a bird, plane, or missile). In all these cases, the
idea of repeated trials does not make sense, but the Bayesian interpretation is valid and indeed

L. Actually, the Stanford statistician (and former professional magician) Persi Diaconis has shown that a coin is about
51% likely to land facing the same way up as it started, due to the physics of the problem (Diaconis et al. 2007).

2.2

2.2.1

2.2.2

28 Chapter 2. Probability

1 T 1
0751 1 0751
0.5F 1 0.5
% 1 2 3 4 5 % 1 2 3) 5
(a) (b)

Figure 2.1 (A) a uniform distribution on {1, 2, 3,4}, with p(z = k) = 1/4. (b) a degenerate distribution
p(z) =1if 2 =1 and p(z) = 0 if =z € {2, 3,4}. Figure generated by discreteProbDistFig.

quite natural. We shall therefore adopt the Bayesian interpretation in this book. Fortunately, the
basic rules of probability theory are the same, no matter which interpretation is adopted.

A brief review of probability theory

This section is a very brief review of the basics of probability theory, and is merely meant as
a refresher for readers who may be “rusty”. Readers who are already familiar with these basics
may safely skip this section.

Discrete random variables

The expression p(A) denotes the probability that the event A is true. For example, A might
be the logical expression “it will rain tomorrow”. We require that 0 < p(A) < 1, where
p(A) = 0 means the event definitely will not happen, and p(A) = 1 means the event definitely
will happen. We write p(A) to denote the probability of the event not A; this is defined to
p(A) =1 — p(A). We will often write A = 1 to mean the event A is true, and A = 0 to mean
the event A is false.

We can extend the notion of binary events by defining a discrete random variable X, which
can take on any value from a finite or countably infinite set X'. We denote the probability of
the event that X = = by p(X =), or just p(x) for short. Here p() is called a probability
mass function or pmf. This satisfies the properties 0 < p(z) < 1 and) _,p(z) = 1.
Figure 2.1 shows two pmf’s defined on the finite state space X = {1,2,3,4,5}. On the left we
have a uniform distribution, p(x) = 1/5, and on the right, we have a degenerate distribution,
p(z) = I(x = 1), where I() is the binary indicator function. This distribution represents the
fact that X is always equal to the value 1, in other words, it is a constant.

Fundamental rules

In this section, we review the basic rules of probability.

2.2.2.1

2.2.2.2

2.2.2.3

2.2.3

2.2.3.1

2.2. A brief review of probability theory 29

Probability of a union of two events

Given two events, A and B, we define the probability of A or B as follows:

p(AvB) = p(A)+p(B)—p(ANB) vA))
= p(A) +p(B) if A and B are mutually exclusive 2.2)

Joint probabilities
We define the probability of the joint event A and B as follows:
p(A,B) = p(AA B) = p(A|B)p(B) (2.3)

This is sometimes called the product rule. Given a joint distribution on two events p(A, B),
we define the marginal distribution as follows:

p(A) =Y p(A,B) = p(AlB =b)p(B =1b) 2.4)
b b

where we are summing over all possible states of B. We can define p(B) similarly. This is
sometimes called the sum rule or the rule of total probability.
The product rule can be applied multiple times to yield the chain rule of probability:

p(X1:p) = p(X1)p(X2| X1)p(X3| X2, X1)p(X4| X1, X2, X3) ... p(Xp|X1:D-1) (2.5)

where we introduce the Matlab-like notation 1 : D to denote the set {1,2,...,D}.

Conditional probability
We define the conditional probability of event A, given that event B is true, as follows:

p(4,B) .
o(B) it p(B) >0 (2.6)

p(A|B) =

Bayes rule

Combining the definition of conditional probability with the product and sum rules yields Bayes
rule, also called Bayes Theorem?:
pX =2Y =y) p(X =2)p(Y =y|X = x)

p(X =z =y) = =) = S p(X = 2)p(Y = y|X = ') 2.7

Example: medical diagnosis

As an example of how to use this rule, consider the following medical diagonsis problem.
Suppose you are a woman in your 40s, and you decide to have a medical test for breast cancer
called a mammogram. If the test is positive, what is the probability you have cancer? That
obviously depends on how reliable the test is. Suppose you are told the test has a sensitivity

2. Thomas Bayes (1702-1761) was an English mathematician and Presbyterian minister.

2.2.3.2

2.2.4

30 Chapter 2. Probability

of 80%, which means, if you have cancer, the test will be positive with probability 0.8. In other
words,

plx=1ly=1)=0.8 (2.8)

where z = 1 is the event the mammogram is positive, and y = 1 is the event you have breast
cancer. Many people conclude they are therefore 80% likely to have cancer. But this is false! It
ignores the prior probability of having breast cancer, which fortunately is quite low:

p(y =1) = 0.004 2.9)

Ignoring this prior is called the base rate fallacy. We also need to take into account the fact
that the test may be a false positive or false alarm. Unfortunately, such false positives are
quite likely (with current screening technology):

plz =1y =0)=0.1 (2.10)
Combining these three terms using Bayes rule, we can compute the correct answer as follows:

plr =1y =1)p(y =1)
W=le=1 = Iy =Dl =1+ =1y = 0y = 0)
0.8 x 0.004
— = 0.031 2.12
0.8 x 0.004 + 0.1 x 0.996 0.03 212)

where p(y = 0) =1 —p(y = 1) = 0.996. In other words, if you test positive, you only have
about a 3% chance of actually having breast cancer!®

Example: Generative classifiers

We can generalize the medical diagonosis example to classify feature vectors x of arbitrary type
as follows:

Py = clx, 8) = p(y = c|®)p(x|y = ¢, 6) 213)

2Py =c0)p(xly = ¢, 0)
This is called a generative classifier, since it specifies how to generate the data using the class-
conditional density p(x|y = ¢) and the class prior p(y = ¢). We discuss such models in detail
in Chapters 3 and 4. An alternative approach is to directly fit the class posterior, p(y = ¢|x);
this is known as a discriminative classifier. We discuss the pros and cons of the two approaches
in Section 8.6.

Independence and conditional independence

We say X and Y are unconditionally independent or marginally independent, denoted
X 1Y, if we can represent the joint as the product of the two marginals (see Figure 2.2), i.e.,

X1Y < pX,Y)=pX)p) (2.14)

2.2. A brief review of probability theory 31

P(X, Y) ’ I I l I ‘P(Y)

P(X)

Figure 2.2 Computing p(z,y) = p(z)p(y), where X L Y. Here X and Y are discrete random variables;
X has 6 possible states (values) and Y has 5 possible states. A general joint distribution on two such
variables would require (6 X 5) — 1 = 29 parameters to define it (we subtract 1 because of the sum-to-one
constraint). By assuming (unconditional) independence, we only need (6 — 1) + (5 — 1) = 9 parameters
to define p(z, y).

In general, we say a set of variables is mutually independent if the joint can be written as a
product of marginals.

Unfortunately, unconditional independence is rare, because most variables can influence most
other variables. However, usually this influence is mediated via other variables rather than being
direct. We therefore say X and Y are conditionally independent (CI) given Z iff the conditional
joint can be written as a product of conditional marginals:

X LY|Z < p(X,Y|Z)=p(X|2)p(Y|Z) (2.15)

When we discuss graphical models in Chapter 10, we will see that we can write this assumption
as a graph X —Z —Y, which captures the intuition that all the dependencies between X and Y
are mediated via Z. For example, the probability it will rain tomorrow (event X) is independent
of whether the ground is wet today (event Y), given knowledge of whether it is raining today
(event Z). Intuitively, this is because Z “causes” both X and Y, so if we know Z, we do not
need to know about Y in order to predict X or vice versa. We shall expand on this concept in
Chapter 10.
Another characterization of CI is this:

Theorem 2.2.1. X | Y'|Z iff there exist function g and h such that

p(z,y|z) = g(x, 2)h(y, 2) (2.16)

forall x,y, z such that p(z) > 0.

3. These numbers are from (McGrayne 2011, p257). Based on this analysis, the US government decided not to recommend
annual mammogram screening to women in their 40s: the number of false alarms would cause needless worry and
stress amongst women, and result in unnecesssary, expensive, and potentially harmful followup tests. See Section 5.7
for the optimal way to trade off risk reverse reward in the face of uncertainty.

2.2.5

32 Chapter 2. Probability

See Exercise 2.8 for the proof.

CI assumptions allow us to build large probabilistic models from small pieces. We will see
many examples of this throughout the book. In particular, in Section 3.5, we discuss naive Bayes
classifiers, in Section 17.2, we discuss Markov models, and in Chapter 10 we discuss graphical
models; all of these models heavily exploit CI properties.

Continuous random variables

So far, we have only considered reasoning about uncertain discrete quantities. We will now show
(following (Jaynes 2003, p107)) how to extend probability to reason about uncertain continuous
quantities.

Suppose X is some uncertain continuous quantity. The probability that X lies in any interval
a < X < b can be computed as follows. Define the events A = (X < a), B = (X <b) and
W = (a < X <b). We have that B = AV W, and since A and W are mutually exclusive, the
sum rules gives

p(B) =p(A) +p(W) 217)
and hence
p(W) =p(B) — p(A) (2.18)

Define the function F(q) £ p(X < ¢). This is called the cumulative distribution function
or cdf of X. This is obviously a monotonically increasing function. See Figure 2.3(a) for an
example. Using this notation we have

pla< X <b)=F()— F(a) (2.19)
Now define f(z) = L F(2) (we assume this derivative exists); this is called the probability
density function or pdf. See Figure 2.3(b) for an example. Given a pdf, we can compute the
probability of a continuous variable being in a finite interval as follows:

b
Pla< X <b) = / f(x)dx (2.20)

As the size of the interval gets smaller, we can write
Pz < X <z +dzx)=p(x)de (2.21)

We require p(x) > 0, but it is possible for p(x) > 1 for any given x, so long as the density
integrates to 1. As an example, consider the uniform distribution Unif(a, b):

1
b—a

Unif (z|a, b) = I(a <2 <)) (2.22)

, we have p(z) = 2 for any z € [0, 1].

Ifweseta:()andb:%

2.2.6

2.2.7

2.2. A brief review of probability theory 33

a2 af2

3 o (a/2) o @ (1-a/2)

() (b)

Figure 2.3 (a) Plot of the cdf for the standard normal, A/(0,1). (b) Corresponding pdf. The shaded
regions each contain «/2 of the probability mass. Therefore the nonshaded region contains 1 — « of the
probability mass. If the distribution is Gaussian A/(0, 1), then the leftmost cutoff point is ®~*(/2), where
® is the cdf of the Gaussian. By symmetry, the rightost cutoff point is ®~'(1 — a/2) = —®~*(/2). If
a = 0.05, the central interval is 95%, and the left cutoff is -1.96 and the right is 1.96. Figure generated by
quantileDemo.

Quantiles

Since the cdf F' is a monotonically increasing function, it has an inverse; let us denote this by
F~L If F is the cdf of X, then F~!(«) is the value of z,, such that P(X < z,) = «; this is
called the o quantile of F. The value F~1(0.5) is the median of the distribution, with half of
the probability mass on the left, and half on the right. The values F~!(0.25) and F~1(0.75)
are the lower and upper quartiles.

We can also use the inverse cdf to compute tail area probabilities. For example, if ® is
the cdf of the Gaussian distribution A/(0, 1), then points to the left of ®~!(c)/2) contain a/2
probability mass, as illustrated in Figure 2.3(b). By symmetry, points to the right of ®~*(1—a/2)
also contain «/2 of the mass. Hence the central interval (®~1(«/2),®71(1 — «/2)) contains
1 — « of the mass. If we set &« = 0.05, the central 95% interval is covered by the range

(®1(0.025), ®7*(0.975)) = (—1.96,1.96) (2.23)

If the distribution is N'(p1, o2), then the 95% interval becomes (1 — 1.960, pu + 1.960). This is
sometimes approximated by writing 1 £ 20.

Mean and variance

The most familiar property of a distribution is its mean, or expected value, denoted by . For

discrete rv's, it is defined as E[X] £ Y _. @ p(x), and for continuous rv’s, it is defined as

E[X] £ [,z p(x)dx. If this integral is not finite, the mean is not defined (we will see some
examples of this later).
The variance is a measure of the “spread” of a distribution, denoted by 2. This is defined

2.3

2.3.1

34 Chapter 2. Probability

as follows:

[l

var [X] E[(X —p)?] = /(x — p)*p(x)dx (2.24)

= /:L'zp(x)dx + 2 /p($)dm - Q;L/xp(:):)dx =E[X?] —p? (2.25)
from which we derive the useful result
E[X? =p® +0? (2.26)
The standard deviation is defined as

std [X] £ \/var [X] (2.27)

This is useful since it has the same units as X itself.

Some common discrete distributions

In this section, we review some commonly used parametric distributions defined on discrete
state spaces, both finite and countably infinite.

The binomial and Bernoulli distributions

Suppose we toss a coin n times. Let X € {0,...,n} be the number of heads. If the probability
of heads is 6, then we say X has a binomial distribution, written as X ~ Bin(n, §). The pmf
is given by

Bin(k|n,) 2 (Z) k(1 — o)+ (2.28)
where
n\ a n!
() 5 -

is the number of ways to choose k items from n (this is known as the binomial coefficient,
and is pronounced “n choose k”). See Figure 2.4 for some examples of the binomial distribution.
This distribution has the following mean and variance:

mean = 6, var =nf(1 —0) (2.30)

Now suppose we toss a coin only once. Let X € {0,1} be a binary random variable, with
probability of “success” or “heads” of 6. We say that X has a Bernoulli distribution. This is
written as X ~ Ber(6), where the pmf is defined as

Ber(z|0) = 6"@=1 (1 — §)'(==0) 2.31)
In other words,
0 ifx=1
Ber(z|0) = { 1-0 ifx=0 (2.32)

This is obviously just a special case of a Binomial distribution with n = 1.

2.3.2

2.3. Some common discrete distributions 35

6=0.250 6=0.900

Figure 2.4 Illustration of the binomial distribution with n = 10 and 6 € {0.25,0.9}. Figure generated
by binomDistPlot.

The multinomial and multinoulli distributions

The binomial distribution can be used to model the outcomes of coin tosses. To model the
outcomes of tossing a K -sided die, we can use the multinomial distribution. This is defined as

follows: let x = (z1,...,2k) be a random vector, where x; is the number of times side j of
the die occurs. Then x has the following pmf:
n K
M 0) £ 07 2.33
u(x|n, 6) <x1xK>H ; (233
where 6; is the probability that side j shows up, and
|
[[— (2.34)
T1... 0K z1lag! !

is the multinomial coefficient (the number of ways to divide a set of size n = Eszl x into
subsets with sizes 1 up to xg).

Now suppose n = 1. This is like rolling a K -sided dice once, so x will be a vector of 0s
and 1s (a bit vector), in which only one bit can be turned on. Specifically, if the dice shows
up as face k, then the k’th bit will be on. In this case, we can think of = as being a scalar
categorical random variable with K states (values), and x is its dummy encoding, that is,
x = [I[(x = 1),...,I(x = K)]. For example, if K = 3, we encode the states 1, 2 and 3 as
(1,0,0), (0,1,0), and (0,0, 1). This is also called a one-hot encoding, since we imagine that
only one of the K “wires” is “hot” or on. In this case, the pmf becomes

K
Mu(x|1,0) = [] ¢, (2.35)
j=1

See Figure 2.1(b-c) for an example. This very common special case is known as a categorical
or discrete distribution. (Gustavo Lacerda suggested we call it the multinoulli distribution, by
analogy with the Binomial/ Bernoulli distinction, a term which we shall adopt in this book.) We

2.3.2.1

36 Chapter 2. Probability

Name n K «x

Multinomial - - x€{0,1,...,n}5, 3% jzp=n
Multinoulli 1 - x € {0,1}%, Zszl x = 1 (l-of-K encoding)
Binomial - 1 ze{0,1,...,n}

Bernoulli 1 1 2€{0,1}

Table 2.1 Summary of the multinomial and related distributions.

2,

QO QO Q dct+Q &+ Q
Nttt Q 0
O 09 900 9 9 9 Q9
QO QOO o0
o000 o0o0o0o0n0n
N NN on0no0ondn
oo +uuu ouuQ
Q@ +0n 00 nQ
Q ++4+Q +~+Q + Q
Q99 9 +90 9 Q9 Q9 Q
N NN nNna 9N NN
N o nNnn o n@Q
O uouuouuouuouuouuouuu
Q9 +0 40 0 00
Q99 N9 9 9 9 Q99
Bits

Qﬁ IA o)

2 3 45 6 7 8 9 1011 12 13 14 15
Sequence Position

(b)

E

Figure 2.5 (a) Some aligned DNA sequences. (b) The corresponding sequence logo. Figure generated by
seqlogoDemo.

will use the following notation for this case:
Cat(z]0) £ Mu(x|1,0) (2.36)
In otherwords, if « ~ Cat(6), then p(x = j|@) = 6. See Table 2.1 for a summary.

Application: DNA sequence motifs

An interesting application of multinomial models arises in biosequence analysis. Suppose
we have a set of (aligned) DNA sequences, such as in Figure 2.5(a), where there are 10 rows
(sequences) and 15 columns (locations along the genome). We see that several locations are con-
served by evolution (e.g., because they are part of a gene coding region), since the corresponding
columns tend to be “pure”. For example, column 7 is all G’s.

One way to visually summarize the data is by using a sequence logo: see Figure 2.5(b). We
plot the letters A, C, G and T with a fontsize proportional to their empirical probability, and with
the most probable letter on the top. The empirical probability distribution at location ¢, 0y, is
gotten by normalizing the vector of counts (see Equation 3.48):

N N N N

N, = (Z I(X; = 1), Z]I(Xit =2), I(X;=3),Y I(Xiy= 4)) 2.37)
i=1 =1 i=1 =1

6, = N;/N 2.38)

This distribution is known as a motif. We can also compute the most probable letter in each
location; this is called the consensus sequence.

2.3.3

2.3.4

2.3. Some common discrete distributions 37

Poi(A=1.000) Poi(1=10.000)

Figure 2.6 Illustration of some Poisson distributions for A € {1,10}. We have truncated the x-axis to
25 for clarity, but the support of the distribution is over all the non-negative integers. Figure generated by
poissonPlotDemo.

The Poisson distribution

We say that X € {0,1,2,...} has a Poisson distribution with parameter A > 0, written
X ~ Poi()\), if its pmf is
AT

Poi(z|\) = e =

(2.39)

The first term is just the normalization constant, required to ensure the distribution sums to 1.
The Poisson distribution is often used as a model for counts of rare events like radioactive
decay and traffic accidents. See Figure 2.6 for some plots.

The empirical distribution

Given a set of data, D = {x1,...,2n}, we define the empirical distribution, also called the
empirical measure, as follows:

N
1
AN
Pemp(4) = Z; 9z; (A) (2.40)
where 0, (A) is the Dirac measure, defined by
_J 0 ifzgA

In general, we can associate “weights” with each sample:
N
p) = widy, (x) (2.42)
i=1

where we require 0 < w; < 1 and vazl w; = 1. We can think of this as a histogram, with
“spikes” at the data points x;, where w; determines the height of spike 7. This distribution
assigns 0 probability to any point not in the data set.

24

2.4.1

38 Chapter 2. Probability

Some common continuous distributions

In this section we present some commonly used univariate (one-dimensional) continuous prob-
ability distributions.

Gaussian (normal) distribution

The most widely used distribution in statistics and machine learning is the Gaussian or normal
distribution. Its pdf is given by
1

N(z|p, o) = \/ﬁeiﬁ(miw (243)
o

Here 1 = E[X] is the mean (and mode), and 02 = var [X] is the variance. V2702 is the
normalization constant needed to ensure the density integrates to 1 (see Exercise 2.11).

We write X ~ N (p,0?) to denote that p(X = z) = N(z|p,0?). If X ~ N(0,1), we
say X follows a standard normal distribution. See Figure 2.3(b) for a plot of this pdf; this is
sometimes called the bell curve.

We will often talk about the precision of a Gaussian, by which we mean the inverse variance:
A = 1/02. A high precision means a narrow distribution (low variance) centered on p.?

Note that, since this is a pdf, we can have p(x) > 1. To see this, consider evaluating the
density at its center, # = . We have N (yu|u, 0?) = (0v/271)71e?, so if ¢ < 1/+/27, we have
p(z) > 1.

The cumulative distribution function or cdf of the Gaussian is defined as

O(z;p,0%) £ / N (2|, 0?)dz (2.44)

See Figure 2.3(a) for a plot of this cdf when p = 0, 02 = 1. This integral has no closed form
expression, but is built in to most software packages. In particular, we can compute it in terms
of the error function (erf):

O(x;p,0) = %[1 + erf(z/v/2)] (2.45)

where z = (z — p)/o and
2 T
erf(x) & — / e dt (2.46)
T Jo

The Gaussian distribution is the most widely used distribution in statistics. There are several
reasons for this. First, it has two parameters which are easy to interpret, and which capture
some of the most basic properties of a distribution, namely its mean and variance. Second,
the central limit theorem (Section 2.6.3) tells us that sums of independent random variables
have an approximately Gaussian distribution, making it a good choice for modeling residual
errors or “noise”. Third, the Gaussian distribution makes the least number of assumptions (has

4. The symbol A\ will have many different meanings in this book, in order to be consistent with the rest of the literature.
The intended meaning should be clear from context.

2.4.2

2.4. Some common continuous distributions 39

maximum entropy), subject to the constraint of having a specified mean and variance, as we
show in Section 9.2.6; this makes it a good default choice in many cases. Finally, it has a simple
mathematical form, which results in easy to implement, but often highly effective, methods, as
we will see. See (Jaynes 2003, ch 7) for a more extensive discussion of why Gaussians are so
widely used.

Degenerate pdf

In the limit that 02 — 0, the Gaussian becomes an infinitely tall and infinitely thin “spike”
centered at

lim N (x|, 0?) = 6(x —) (2.47)
c2—0

where ¢ is called a Dirac delta function, and is defined as

oo ifz=0
§(z) = { 0 i1 £0 (2.48)
such that
/ d(z)dr =1 (2.49)

A useful property of delta functions is the sifting property, which selects out a single term
from a sum or integral:

[st - wis = 1) 250

since the integrand is only non-zero if x — = 0.

One problem with the Gaussian distribution is that it is sensitive to outliers, since the log-
probability only decays quadratically with distance from the center. A more robust distribution
is the Student ¢ distribution® Its pdf is as follows:

-4
1 T—p 2 2
14— <) (2.51)
v o

2

T(zlp, 0% v) o

where 1 is the mean, o° > 0 is the scale parameter, and v > 0 is called the degrees of
freedom. See Figure 2.7 for some plots. For later reference, we note that the distribution has
the following properties:

mean = p, mode = p, var = (2.52)

(v =2)

5. This distribution has a colourful etymology. It was first published in 1908 by William Sealy Gosset, who worked at the
Guinness brewery in Dublin. Since his employer would not allow him to use his own name, he called it the “Student”
distribution. The origin of the term ¢ seems to have arisen in the context of Tables of the Student distribution, used by
Fisher when developing the basis of classical statistical inference. See http://jef£560.tripod.com/s.html for more
historical details.

40 Chapter 2. Probability

Figure 2.7 (a) The pdf's for a A’(0,1), 7(0,1,1) and Lap(0,1/+/2). The mean is 0 and the variance
is 1 for both the Gaussian and Laplace. The mean and variance of the Student is undefined when v = 1.
(b) Log of these pdf’s. Note that the Student distribution is not log-concave for any parameter value, unlike
the Laplace distribution, which is always log-concave (and log-convex...) Nevertheless, both are unimodal.
Figure generated by studentLaplacePdfPlot.

= = = = gaussian = = = = gaussian
—— student T —— student T
= = laplace =— = laplace

——

Figure 2.8 Illustration of the effect of outliers on fitting Gaussian, Student and Laplace distributions. (a)
No outliers (the Gaussian and Student curves are on top of each other). (b) With outliers. We see that the
Gaussian is more affected by outliers than the Student and Laplace distributions. Based on Figure 2.16 of
(Bishop 2006a). Figure generated by robustDemo.

The variance is only defined if v > 2. The mean is only defined if v > 1.

As an illustration of the robustness of the Student distribution, consider Figure 2.8. On the
left, we show a Gaussian and a Student fit to some data with no outliers. On the right, we
add some outliers. We see that the Gaussian is affected a lot, whereas the Student distribution
hardly changes. This is because the Student has heavier tails, at least for small v (see Figure 2.7).

If v = 1, this distribution is known as the Cauchy or Lorentz distribution. This is notable
for having such heavy tails that the integral that defines the mean does not converge.

To ensure finite variance, we require v > 2. It is common to use v = 4, which gives good
performance in a range of problems (Lange et al. 1989). For v >> 5, the Student distribution
rapidly approaches a Gaussian distribution and loses its robustness properties.

2.4.3

2.4.4

2.4. Some common continuous distributions 41

Gamma distributions 3.5
0.9 T T T
=—2a=1.0,b=1.0
08[«===a=15b=1.0]
===1:3=2.0,b=1.0

0.7r
0.6
osf .

»
0.4 .

(v * -
sl £\

. TN

/ AN

02Fy AR
’~.\,
o N
0.1 LI N : .\ -
P I
1 2 3 4 5 6 7 1.5 2 25

() (b)

Figure 2.9 (a) Some Ga(a,b = 1) distributions. If @ < 1, the mode is at 0, otherwise it is > 0. As
we increase the rate b, we reduce the horizontal scale, thus squeezing everything leftwards and upwards.
Figure generated by gammaPlotDemo. (b) An empirical pdf of some rainfall data, with a fitted Gamma
distribution superimposed. Figure generated by gammaRainfallDemo.

The Laplace distribution

Another distribution with heavy tails is the Laplace distribution®, also known as the double
sided exponential distribution. This has the following pdf:

1 |z — pl
L b = — - 2.53
ap(z|pu, b) 55 &XP (;) (2.53)
Here 4 is a location parameter and b > 0 is a scale parameter. See Figure 2.7 for a plot. This
distribution has the following properties:
mean = ., mode = j, var = 2b° (2.54)

Its robustness to outliers is illustrated in Figure 2.8. It also put mores probability density at 0
than the Gaussian. This property is a useful way to encourage sparsity in a model, as we will
see in Section 13.3.

The gamma distribution

The gamma distribution is a flexible distribution for positive real valued rv’s, x > 0. Tt is
defined in terms of two parameters, called the shape a > 0 and the rate b > 0.’

ba
Ga(T|shape = a,rate = b) = I)Tafle*Tb (2.55)
a

6. Pierre-Simon Laplace (1749-1827) was a French mathematician, who played a key role in creating the field of Bayesian
statistics.

7. There is an alternative parameterization, where we use the scale parameter instead of the rate: Gas(7T'|a,b) =
Ga(T'|a, 1/b). This version is the one used by Matlab’s gampdf£, although in this book will use the rate parameterization
unless otherwise specified.

2.4.5

42 Chapter 2. Probability

where I'(a) is the gamma function:
I'(z) 2 / u e du (2.56)
0

See Figure 2.9 for some plots. For later reference, we note that the distribution has the following
properties:
a a—1
mean = —, mode = ———, var = — (2.57)
b b
There are several distributions which are just special cases of the Gamma, which we discuss
below.

* Exponential distribution This is defined by Expon(z|\) £ Ga(z|1, \), where) is the rate
parameter. This distribution describes the times between events in a Poisson process, i.e. a
process in which events occur continuously and independently at a constant average rate \.

e Erlang distribution This is the same as the Gamma distribution where a is an integer. It
is common to fix a = 2, yielding the one-parameter Erlang distribution, Erlang(z|)\) =
Ga(x|2, \), where X is the rate parameter.

e Chi-squared distribution This is defined by x?(z|v) £ Ga(z|%, 1). This is the distribution
of the sum of squared Gaussian random variables. More precisely, if Z; ~ A(0,1), and
S =37 Z% then S ~ x2.

Another useful result is the following: If X ~ Ga(a,b), then one can show (Exercise 2.10)
that & ~ IG(a, b), where IG is the inverse gamma distribution defined by

IG(x|shape = a,scale = b) = I—‘ZZa) g (et bz (2.58)

The distribution has these properties

b2
= — de = = 2.59
mean PR mode a+1,var (a—l)Q(a—2)7 (2.59)
The mean only exists if ¢ > 1. The variance only exists if a > 2.
We will see applications of these distributions later on.
The beta distribution
The beta distribution has support over the interval [0, 1] and is defined as follows:
1
Bet b) = ———a" (1 —a)"! 2.60
eta(z|a,b) B(a,b)x (1-2x) (2.60)
Here B(p, q) is the beta function,
I'(a)T'(b)
B(a,b) & ———— 2.61
(@) 2 52 61

See Figure 2.10 for plots of some beta distributions. We require a, b > 0 to ensure the distribution
is integrable (i.e., to ensure B(a,b) exists). If a = b = 1, we get the uniform distirbution. If

2.4.6

2.4. Some common continuous distributions 43

beta distributions
T T

O OoTOTOT
[T [Tl

A Ww=O
coo=
~
-~

0.1
1.0
25} "= "a=20,
8.0

Figure 2.10 Some beta distributions. Figure generated by betaPlotDemo.

a and b are both less than 1, we get a bimodal distribution with “spikes” at 0 and 1, if @ and
b are both greater than 1, the distribution is unimodal. For later reference, we note that the
distribution has the following properties (Exercise 2.16):

a—1 ab
— (2.62)

mode = (@t b)2a@tbrl)

a
mean = m, m, var

Pareto distribution

The Pareto distribution is used to model the distribution of quantities that exhibit long tails,
also called heavy tails. For example, it has been observed that the most frequent word in
English (“the”) occurs approximately twice as often as the second most frequent word (“of”),
which occurs twice as often as the fourth most frequent word, etc. If we plot the frequency of
words vs their rank, we will get a power law; this is known as Zipf’s law. Wealth has a similarly
skewed distribution, especially in plutocracies such as the USA.8

The Pareto pdf is defined as follow:

Pareto(xz|k, m) = km*z~*+DI(z > m) (2.63)

This density asserts that © must be greater than some constant m, but not too much greater,
where k controls what is “too much”. As k — oo, the distribution approaches 6(x — m). See
Figure 2.11(a) for some plots. If we plot the distibution on a log-log scale, it forms a straight
line, of the form logp(x) = alogx + ¢ for some constants a and c¢. See Figure 2.11(b) for an
illustration (this is known as a power law). This distribution has the following properties

km m2k
mean = —— ifk>1, mode=m, var= —x«—— if k£ > 2 (2.64)
K1 !) =120k —2)
8. In the USA, 400 Americans have more wealth than half of all Americans combined. (Source:

http://www.politifact.com/wisconsin/statements/2011/mar/10/michael-moore/michael-moore-s
ays-400-americans-have-more-wealth-.) See (Hacker and Pierson 2010) for a political analysis of how such an
extreme distribution of income has arisen in a democratic country.

2.5

2.5.1

44 Chapter 2. Probability

Pareto distribution | Pareto(m=1, k) on log scale

2 1=0.01, k=0.10

(@) (b)

Figure 2.11 (a) The Pareto distribution Pareto(x|m, k) for m = 1. (b) The pdf on a log-log scale. Figure
generated by paretoPlot.

Joint probability distributions

So far, we have been mostly focusing on modeling univariate probability distributions. In this
section, we start our discussion of the more challenging problem of building joint probability
distributions on multiple related random variables; this will be a central topic in this book.

A joint probability distribution has the form p(z1,...,zp) for a set of D > 1 variables,
and models the (stochastic) relationships between the variables. If all the variables are discrete,
we can represent the joint distribution as a big multi-dimensional array, with one variable per
dimension. However, the number of parameters needed to define such a model is O(K?),
where K is the number of states for each variable.

We can define high dimensional joint distributions using fewer parameters by making con-
ditional independence assumptions, as we explain in Chapter 10. In the case of continuous
distributions, an alternative approach is to restrict the form of the pdf to certain functional
forms, some of which we will examine below.

Covariance and correlation

The covariance between two rv's X and Y measures the degree to which X and Y are (linearly)
related. Covariance is defined as

cov[X,Y] & E[(X-E[X])Y —E[Y])] =E[XY] - E[X]E[Y] (2.65)

2.5. Joint probability distributions 45

1.0 0.8 0.4 -1.0
1.0 1.0 1.0 -1.0
. _,‘/"-, e T \-""'“\‘ ‘“\\\\ '\\

Figure 2.12 Several sets of (x,y) points, with the correlation coefficient of = and y for each set. Note
that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope
of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the
center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y’
is zero. Source: http://en.wikipedia.org/wiki/File:Correlation_examples.png

If x is a d-dimensional random vector, its covariance matrix is defined to be the following
symmetric, positive definite matrix:

covlx] 2 E|[x-EX)x—-E [x])ﬂ (2.66)
var [X1] cov|[Xy,Xa] -+ cov[Xy,X4]
cov [X2, X1] var [Xs] <o cov [Xa, X4
= : : . , (2.67)
cov [Xd, X1] cov[Xg, Xo] - var [X 4]

Covariances can be between 0 and infinity. Sometimes it is more convenient to work with a
normalized measure, with a finite upper bound. The (Pearson) correlation coefficient between

X and Y is defined as
cov [X,Y]

corr [X, Y] & ——n o (2.68)
var [X] var [Y]
A correlation matrix has the form
corr [X1, X1] corr [X1, Xa] -+ corr [X7, X4]
R— : : : (2.69)
corr [Xg, X1] corr [Xg4, Xao] -+ corr[Xg, X4]

One can show (Exercise 4.3) that —1 < corr [X,Y] < 1. Hence in a correlation matrix, each
entry on the diagonal is 1, and the other entries are between -1 and 1.

One can also show that corr [X,Y] = 1 if and only if Y = aX + b for some parameters a
and b, i.e., if there is a linear relationship between X and Y (see Exercise 4.4). Intuitively one

2.5.2

2.5.3

46 Chapter 2. Probability

might expect the correlation coefficient to be related to the slope of the regression line, i.e., the
coefficient @ in the expression Y = aX + b. However, as we show in Equation 7.99 later, the
regression coefficient is in fact given by a = cov [X,Y] /var [X]. A better way to think of the
correlation coefficient is as a degree of linearity: see Figure 2.12.

If X and Y are independent, meaning p(X,Y) = p(X)p(Y) (see Section 2.2.4), then
cov [X,Y] = 0, and hence corr[X,Y] = 0 so they are uncorrelated. However, the con-
verse is not true: uncorrelated does not imply independent. For example, let X ~ U(—1,1) and
Y = X2 Clearly Y is dependent on X (in fact, Y is uniquely determined by X), yet one
can show (Exercise 4.1) that corr [X,Y] = 0. Some striking examples of this fact are shown in
Figure 2.12. This shows several data sets where there is clear dependendence between X and Y/,
and yet the correlation coefficient is 0. A more general measure of dependence between random
variables is mutual information, discussed in Section 2.8.3. This is only zero if the variables truly
are independent.

The multivariate Gaussian

The multivariate Gaussian or multivariate normal (MVN) is the most widely used joint prob-
ability density function for continuous variables. We discuss MVNs in detail in Chapter 4; here
we just give some definitions and plots.

The pdf of the MVN in D dimensions is defined by the following:

NEmS) 2 — ot p)™s (x = p) 2.70)

K, (2m) D212 p B n 12 .
where g = E[x] € RP is the mean vector, and ¥ = cov[x] is the D x D covariance
matrix. Sometimes we will work in terms of the precision matrix or concentration matrix
instead. This is just the inverse covariance matrix, A = >~!. The normalization constant
(2m)~P/2|A|'/? just ensures that the pdf integrates to 1 (see Exercise 4.5).

Figure 2.13 plots some MVN densities in 2d for three different kinds of covariance matrices.
A full covariance matrix has D(D + 1)/2 parameters (we divide by 2 since X is symmetric). A
diagonal covariance matrix has D parameters, and has 0s in the off-diagonal terms. A spherical
or isotropic covariance, 3 = 21 p, has one free parameter.

Multivariate Student ¢ distribution

A more robust alternative to the MVN is the multivariate Student t distribution, whose pdf is
given by
—-(“52)

y —1/2
e B b
= er“ x 1+ =)V x—p)]

T (x|, X, v)

(“57)

(2.72)

where 3 is called the scale matrix (since it is not exactly the covariance matrix) and V = vX.
This has fatter tails than a Gaussian. The smaller v is, the fatter the tails. As v — oo, the

2.5.4

2.5. Joint probability distributions 47

full diagonal

N S S - S R S-S

spherical spherical

oL -
h L o N ow s o

L
4

Figure 2.13 We show the level sets for 2d Gaussians. (a) A full covariance matrix has elliptical contours.
(b) A diagonal covariance matrix is an axis aligned ellipse. (c) A spherical covariance matrix has a circular
shape. (d) Surface plot for the spherical Gaussian in (c). Figure generated by gaussPlot2Ddemo.

distribution tends towards a Gaussian. The distribution has the following properties

mean = p, mode = pu, Cov = LQE (2.73)
v _

Dirichlet distribution

A multivariate generalization of the beta distribution is the Dirichlet distribution’, which has
support over the probability simplex, defined by

K
Sk ={x:0<a, <1, =1} (2.74)
k=1

The pdf is defined as follows:

K
Dir(x|a) £ H 2 M(x € Sk) 2.75)

9. Johann Dirichlet was a German mathematician, 1805-1859.

48 Chapter 2. Probability

@=0.10

(©] (d)

Figure 2.14 (a) The Dirichlet distribution when K = 3 defines a distribution over the simplex, which
can be represented by the triangular surface. Points on this surface satisfy 0 < 6, < 1 and 22:1 O, =
1. (b) Plot of the Dirichlet density when a = (2,2,2). () @ = (20,2,2). Figure generated by
visDirichletGui, by Jonathan Huang. (d) @ = (0.1,0.1,0.1). (The comb-like structure on the edges is
a plotting artifact.) Figure generated by dirichlet3dPlot.

Samples from Dir (alpha=0.1) Samples from Dir (alpha=1)

1
o0 -:]
o ‘ ‘ ol [| |
1 2 3 4 5 1 2 3 4 5
1 T T T 1 T
o ‘ o I .
1 2 3 4 5 1 2 3 4 5
1 T T T 1 T T T T T
| ’ L o ’
; . mmm :
1 2 3 4 5 1 2 3 4 5
1 T T T 1 T T T T T
oL — . —— [|
1 2 3 4 5 1 2 3 4 5
1 T T T 1 T
0.5F A 05F
. a [. —
1 2 3 4 5 1 2 3 4 5

Figure 2.15 Samples from a 5-dimensional symmetric Dirichlet distribution for different parameter values.
(@) & = (0.1,...,0.1). This results in very sparse distributions, with many 0s. (b) a = (1,...,1). This
results in more uniform (and dense) distributions. Figure generated by dirichletHistogramDemo.

2.6

2.6.1

2.6. Transformations of random variables 49

where B(ayq,...,ak) is the natural generalization of the beta function to K variables:
K
_1 (o)
B(a) & iz Tow) (2.76)
S

where o £ Zkl,(zl Q.

Figure 2.14 shows some plots of the Dirichlet when K = 3, and Figure 2.15 for some sampled
probability vectors. We see that oy = Zle ay, controls the strength of the distribution (how
peaked it is), and the oy control where the peak occurs. For example, Dir(1,1,1) is a uniform
distribution, Dir(2, 2, 2) is a broad distribution centered at (1/3,1/3,1/3), and Dir(20, 20, 20)
is a narrow distribution centered at (1/3,1/3,1/3). If a; < 1 for all &k, we get “spikes” at the
corner of the simplex.

For future reference, the distribution has these properties

o — 1 agag — o)
] = e 1)
0

E[zx] = %, mode [z}] = (2.77)

ap oy — K’

where a9 =), ay. Often we use a symmetric Dirichlet prior of the form o, = o/ K. In this
case, the mean becomes 1/K, and the variance becomes var [x}] = % So increasing «
increases the precision (decreases the variance) of the distribution.

Transformations of random variables

If x ~ p() is some random variable, and y = f(x), what is the distribution of y? This is the
question we address in this section.
Linear transformations
Suppose f() is a linear function:
y=/f(x)=Ax+b (2.78)

In this case, we can easily derive the mean and covariance of y as follows. First, for the mean,
we have

Ely]=E[Ax+b]=Au+b 2.79)

where p = E [x]. This is called the linearity of expectation. If f() is a scalar-valued function,
f(x) = a’x + b, the corresponding result is

Ela"x+b]=a"pn+b (2.80)
For the covariance, we have
cov [y] = cov[Ax + b] = AXAT (2.8

where ¥ = cov [x]. We leave the proof of this as an exercise. If f() is scalar valued, the result
becomes

var [y] = var [aTx + b] =a’Ya (2.82)

2.6.2

2.6.2.1

50 Chapter 2. Probability

We will use both of these results extensively in later chapters. Note, however, that the mean
and covariance only completely define the distribution of y if x is Gaussian. In general we must
use the techniques described below to derive the full distribution of y, as opposed to just its
first two moments.

General transformations

If X is a discrete rv, we can derive the pmf for y by simply summing up the probability mass
for all the 2’s such that f(z) = y:

pW)= > pulx) (2.83)
z:f(z)=y
For example, if f(X) = 1if X is even and f(X) = 0 otherwise, and p,(X) is uniform on the
set {1,...,10}, then py(1) = >° 5 465,10y P=(z) = 0.5, and py(0) = 0.5 similarly. Note
that in this example, f is a many-to-one function.
If X is continuous, we cannot use Equation 2.83 since p,.(z) is a density, not a pmf, and we
cannot sum up densities. Instead, we work with cdf’s, and write

Py(y) £ P(Y <y) = P(f(X) < y) = P(X € {2|f(z) < y}) (2.89)

We can derive the pdf of y by differentiating the cdf.
In the case of monotonic and hence invertible functions, we can write

Py(y) = P(f(X) <y) = P(X < f7(y) = Pu(f ' (1) (2.85)
Taking derivatives we get
A d d 1 dx d dx
2 _py)=—P, = ——P(2) = 1o 2.86
P 2 L P0) = P) = G Pel@) = Toa(a) 289
where © = f~!(y). We can think of dz as a measure of volume in the x-space; similarly dy

measures volume in y space. Thus 92 measures the change in volume. Since the sign of this

change is not important, we take the absolute value to get the general expression:

dx
py(y) = pa()| oy 2.87)

This is called change of variables formula. We can understand this result more intuitively as
follows. Observations falling in the range (x, 2+ dx) will get transformed into (y, y+dy), where

pz(x)dx ~ py(y)d,. Hence py(y) ~ pu(x) % . For example, suppose X ~ U(—1,1), and

Y = X2 Then p,(y) = %y_%. See also Exercise 2.10.

Multivariate change of variables *

We can extend the previous results to multivariate distributions as follows. Let f be a function
that maps R™ to R”, and let y = f(x). Then its Jacobian matrix J is given by

gi ‘gi
Ayy, ... o v

Iy 2 QW) o f : 259
ANz, xp) Ovn Oy

Oxq Ox .y,

2.6.3

2.6. Transformations of random variables 51

| det J| measures how much a unit cube changes in volume when we apply f.
If f is an invertible mapping, we can define the pdf of the transformed variables using the
Jacobian of the inverse mapping y — x:

ox

py(y) = pa ()| det (ay) | = pa ()| det 3y 289)

In Exercise 4.5 you will use this formula to derive the normalization constant for a multivariate
Gaussian.

As a simple example, consider transforming a density from Cartesian coordinates x = (1, 22)
to polar coordinates y = (r,), where z; = 7 cos@ and x5 = rsin 6. Then

Ox oz .
Oz, Jzy i) —rsinf

Jyox = (a‘i fgfz) = (CO& ") (2.90)
or

sinf rcosf

90
and
|det J| = |rcos® 0 + rsin? 6| = |r| 2.9
Hence
py(y) = px(x)|det]| (2.92)
Pro(r0) = Doy (T1,22)7 = Py, ay (rcos,rsind)r (2.93)

To see this geometrically, notice that the area of the shaded patch in Figure 2.16 is given by
Pir<R<r+dr,0 <©<0+dl) = p.o(r,0)drdd (2.94)

In the limit, this is equal to the density at the center of the patch, p(r,), times the size of the
patch, r dr df. Hence

Pro(r,0)drdd = pg, o, (rcos,rsind)r dr do (2.95)

Central limit theorem

Now consider N random variables with pdf’s (not necessarily Gaussian) p(x;), each with mean
u and variance o2, We assume each variable is independent and identically distributed
or iid for short. Let Sy = Ef\il X; be the sum of the rvs. This is a simple but widely
used transformation of rv's. One can show that, as N increases, the distribution of this sum
approaches

1 (s = Np)?

Hence the distribution of the quantity
Sy —Np X —u
N o/IN

converges to the standard normal, where X = + Ziil x; is the sample mean. This is called
the central limit theorem. See e.g., Jaynes 2003, p222) or (Rice 1995, p169) for a proof.

In Figure 2.17 we give an example in which we compute the mean of rv’s drawn from a beta
distribution. We see that the sampling distribution of the mean value rapidly converges to a
Gaussian distribution.

(2.97)

Zy =

2.7

52 Chapter 2. Probability

6 \6+d6

pissretEdr

Figure 2.16 Change of variables from polar to Cartesian. The area of the shaded patch is r dr df. Based
on (Rice 1995) Figure 3.16.

(] 05 1 o 05 1

(@) (b)

Figure 2.17 The central limit theorem in pictures. We plot a histogram of + Zf:l Tij, where x;; ~
Beta(1,5), for 5 = 1 : 10000. As N — oo, the distribution tends towards a Gaussian. (a) N = 1. (b)
N = 5. Based on Figure 2.6 of (Bishop 2006a). Figure generated by centralLimitDemo.

Monte Carlo approximation

In general, computing the distribution of a function of an rv using the change of variables
formula can be difficult. One simple but powerful alternative is as follows. First we generate
S samples from the distribution, call them z1,...,2g. (There are many ways to generate such
samples; one popular method, for high dimensional distributions, is called Markov chain Monte
Carlo or MCMG; this will be explained in Chapter 24.) Given the samples, we can approximate
the distribution of f(X) by using the empirical distribution of {f(zs)}5_;. This is called a
Monte Carlo approximation, named after a city in Europe known for its plush gambling casinos.
Monte Carlo techniques were first developed in the area of statistical physics — in particular,
during development of the atomic bomb — but are now widely used in statistics and machine
learning as well.

We can use Monte Carlo to approximate the expected value of any function of a random

2,71

2.7. Monte Carlo approximation 53

1.5 6 0.25
1 0.2
4
0.15
0.5
0.1
2
0 0.05
-0.5 0 0
-1 0 1 0 0.5 1 0 0.5 1

Figure 2.18 Computing the distribution of y = 2%, where p(x) is uniform (left). The analytic result is
shown in the middle, and the Monte Carlo approximation is shown on the right. Figure generated by
changeOfVarsDemo1d.

variable. We simply draw samples, and then compute the arithmetic mean of the function
applied to the samples. This can be written as follows:

S
B(0) = [falpade~ 5 fa) 299

where z; ~ p(X). This is called Monte Carlo integration, and has the advantage over numerical
integration (which is based on evaluating the function at a fixed grid of points) that the function
is only evaluated in places where there is non-negligible probability.

By varying the function f(), we can approximate many quantities of interest, such as

e T=1Y7 2, > E[X]

o 130 (0 —7)? - var[X]

o t#{z,<c} > P(X <o)

e median{zy,..., 25} — median(X)

We give some examples below, and will see many more in later chapters.

Example: change of variables, the MC way

In Section 2.6.2, we discussed how to analytically compute the distribution of a function of a
random variable, y = f(x). A much simpler approach is to use a Monte Carlo approximation.
For example, suppose 2 ~ Unif(—1,1) and y = x2. We can approximate p(y) by drawing
many samples from p(z), squaring them, and computing the resulting empirical distribution.
See Figure 2.18 for an illustration. We will use this technique extensively in later chapters. See
also Figure 5.2.

2.7.2

2.7.3

54 Chapter 2. Probability

Figure 2.19 Estimating 7 by Monte Carlo integration. Blue points are inside the circle, red crosses are
outside. Figure generated by mcEstimatePi.

Example: estimating 7w by Monte Carlo integration

MC approximation can be used for many applications, not just statistical ones. Suppose we want
to estimate . We know that the area of a circle with radius 7 is 772, but it is also equal to the
following definite integral:

T T
I= / / I(x? + y* < r?)dzdy (2.99)
—rJ—r

Hence m = I/(r?). Let us approximate this by Monte Carlo integration. Let f(x,y) =
H(x2 +y2 < r2) be an indicator function that is 1 for points inside the circle, and 0 outside,
and let p(x) and p(y) be uniform distributions on [—r, 7], so p(z) = p(y) = 1/(2r). Then

I = (2r)(2r) / / f(@, y)p(x)p(y)dedy (2100)
= 4r2//f(x7y)p(m)p(y)dxdy (2.101)

Q

S
1
4r2g § f(zs,ys) (2.102)
s=1

We find # = 3.1416 with standard error 0.09 (see Section 2.7.3 for a discussion of standard
errors). We can plot the points that are accepted/ rejected as in Figure 2.19.

Accuracy of Monte Carlo approximation

The accuracy of an MC approximation increases with sample size. This is illustrated in Fig-
ure 2.20, On the top line, we plot a histogram of samples from a Gaussian distribution. On
the bottom line, we plot a smoothed version of these samples, created using a kernel density
estimate (Section 14.7.2). This smoothed distribution is then evaluated on a dense grid of points

2.7. Monte Carlo approximation 55

10 samples 100 samples

0 o
() (b)

10 samples 100 samples

05 25 05 1 15 2 25

(G

Figure 2.20 10 and 100 samples from a Gaussian distribution, A'(x = 1.5,6% = 0.25). Solid red
line is true pdf. Top line: histogram of samples. Bottom line: kernel density estimate derived from
samples in dotted blue, solid red line is true pdf. Based on Figure 4.1 of (Hoff 2009). Figure generated by
mcAccuracyDemo.

and plotted. Note that this smoothing is just for the purposes of plotting, it is not used for the
Monte Carlo estimate itself.

If we denote the exact mean by u = E[f(X)], and the MC approximation by /i, one can
show that, with independent samples,

(o —p) — N(0, %2) (2.103)
where
o? = var [f(X)] = E[f(X)?] —E[f(X)]? (2.104)

2

This is a consequence of the central-limit theorem. Of course, ¢ is unknown in the above

expression, but it can also be estimated by MC:

S
— 12(]‘(335)— f1)? (2.105)

o
<Aa<p+1.96— b ~0.95 (2.106)
= NG }

2.8

2.8.1

56 Chapter 2. Probability

The term 4/ %2 is called the (numerical or empirical) standard error, and is an estimate of our
uncertainty about our estimate of p. (See Section 6.2 for more discussion on standard errors.)

If we want to report an answer which is accurate to within +¢ with probability at least 95%,
we need to use a number of samples S which satisfies 1.961/52/S < e. We can approximate

the 1.96 factor by 2, yielding S > %2

Information theory

information theory is concerned with representing data in a compact fashion (a task known as
data compression or source coding), as well as with transmitting and storing it in a way that
is robust to errors (a task known as error correction or channel coding). At first, this seems
far removed from the concerns of probability theory and machine learning, but in fact there is
an intimate connection. To see this, note that compactly representing data requires allocating
short codewords to highly probable bit strings, and reserving longer codewords to less probable
bit strings. This is similar to the situation in natural language, where common words (such as
“a”, “the”, “and”) are generally much shorter than rare words. Also, decoding messages sent over
noisy channels requires having a good probability model of the kinds of messages that people
tend to send. In both cases, we need a model that can predict which kinds of data are likely
and which unlikely, which is also a central problem in machine learning (see (MacKay 2003) for
more details on the connection between information theory and machine learning).

Obviously we cannot go into the details of information theory here (see e.g., (Cover and
Thomas 2006) if you are interested to learn more). However, we will introduce a few basic
concepts that we will need later in the book.

Entropy

The entropy of a random variable X with distribution p, denoted by H (X) or sometimes
H (p), is a measure of its uncertainty. In particular, for a discrete variable with K states, it is
defined by

K

H(X) £ =) p(X = k)log, p(X = k) (2.107)
k=1

Usually we use log base 2, in which case the units are called bits (short for binary digits). If
we use log base e, the units are called nats. For example, if X € {1,...,5} with histogram
distribution p = [0.25,0.25,0.2,0.15,0.15], we find H = 2.2855. The discrete distribution with
maximum entropy is the uniform distribution (see Section 9.2.6 for a proof). Hence for a K -ary
random variable, the entropy is maximized if p(x = k) = 1/K; in this case, H (X) = log, K.
Conversely, the distribution with minimum entropy (which is zero) is any delta-function that
puts all its mass on one state. Such a distribution has no uncertainty. In Figure 2.5(b), where
we plotted a DNA sequence logo, the height of each bar is defined to be 2 — H, where H is
the entropy of that distribution, and 2 is the maximum possible entropy. Thus a bar of height 0
corresponds to a uniform distribution, whereas a bar of height 2 corresponds to a deterministic
distribution.

2.8.2

2.8. Information theory 57

0.5F

H(X)

0 0.5 1
p(X=1)

Figure 2.21 Entropy of a Bernoulli random variable as a function of #. The maximum entropy is
log, 2 = 1. Figure generated by bernoulliEntropyFig.

For the special case of binary random variables, X € {0,1}, we can write p(X = 1) =6
and p(X = 0) = 1 — 6. Hence the entropy becomes

H(X) = —[pX =1)logyp(X =1)+p(X =0)log, p(X = 0)] (2.108)
= —[flog, 6+ (1 —0)logy(1 — 0)] (2.109)

This is called the binary entropy function, and is also written H (6). We plot this in Figure 2.21.
We see that the maximum value of 1 occurs when the distribution is uniform, 6 = 0.5.

KL divergence

One way to measure the dissimilarity of two probability distributions, p and ¢, is known as the
Kullback-Leibler divergence (KL divergence) or relative entropy. This is defined as follows:

L (pllq) = Zpk IOg = (2.110)

where the sum gets replaced by an integral for pdfs."® We can rewrite this as

KL (pllg) = > prlogp — > _ prlogaqr = —H (p) + H (p, q) (2.111)
k k

where H (p, q) is called the cross entropy,

—> " prlogar 2.112)

One can show (Cover and Thomas 2006) that the cross entropy is the average number of bits
needed to encode data coming from a source with distribution p when we use model ¢ to

10. The KL divergence is not a distance, since it is asymmetric. One symmetric version of the KL divergence is the
Jensen-Shannon divergence, defined as J.S(p1,p2) = 0.5KL (p1||q) + 0.5KL (p2||q), where ¢ = 0.5p1 + 0.5p2.

58 Chapter 2. Probability

define our codebook. Hence the “regular” entropy H (p) = H (p, p), defined in Section 2.8.1, is
the expected number of bits if we use the true model, so the KL divergence is the difference
between these. In other words, the KL divergence is the average number of extra bits needed to
encode the data, due to the fact that we used distribution ¢ to encode the data instead of the
true distribution p.

The “extra number of bits” interpretation should make it clear that KL (p||¢) > 0, and that
the KL is only equal to zero iff ¢ = p. We now give a proof of this important result.

Theorem 2.8.1. (Information inequality) KL (p||q) > 0 with equality iff p = q.

Proof. To prove the theorem, we need to use Jensen’s inequality. This states that, for any
convex function f, we have that

f (i /\ixi> < Z Aif(xi) (2.113)
i=1 i=1

where \; > 0 and Y ", \; = 1. This is clearly true for n = 2 (by definition of convexity), and
can be proved by induction for n > 2.

Let us now prove the main theorem, following (Cover and Thomas 2006, p28). Let A = {x :
p(z) > 0} be the support of p(z). Then

xX
~KL(pllg) = =) plx () =Y p(z)log qE) (2.114)
z€A T€A p\x
< log Z p(x & = log Z (2.115)
T€A .CE r€A
< log Y q(z)=logl=0 (2.116)

reX

where the first inequality follows from Jensen’s. Since log(z) is a strictly concave function, we
have equality in Equation 2.115 iff p(z) = cq(x) for some c¢. We have equality in Equation 2.116
iff Y caa(x) =3 cxq(x) =1, which implies ¢ = 1. Hence KL (p||q) = 0 iff p(z) = q(x)
for all x. O

One important consequence of this result is that the discrete distribution with the maximum
entropy is the uniform distribution. More precisely, H (X) < log |X|, where |X| is the number
of states for X, with equality iff p(m) is uniform. To see this, let u(z) = 1/|X|. Then

0 < KL(p|lu) = Zp

Z p(z) log p(x Z p(z)logu(x) = —H (X) + log | X] (2.118)
x

(2.117)

This is a formulation of Laplace’s principle of insufficient reason, which argues in favor of
using uniform distributions when there are no other reasons to favor one distribution over
another. See Section 9.2.6 for a discussion of how to create distributions that satisfy certain
constraints, but otherwise are as least-commital as possible. (For example, the Gaussian satisfies
first and second moment constraints, but otherwise has maximum entropy.)

2.8.3

2.8.3.1

2.8. Information theory 59

Mutual information

Consider two random variables, X and Y. Suppose we want to know how much knowing one
variable tells us about the other. We could compute the correlation coefficient, but this is only
defined for real-valued random variables, and furthermore, this is a very limited measure of
dependence, as we saw in Figure 2.12. A more general approach is to determine how similar the
joint distribution p(X,Y") is to the factored distribution p(X)p(Y'). This is called the mutual
information or MI, and is defined as follows:

p(z)p(y)

We have I(X;Y) > 0 with equality iff p(X,Y) = p(X)p(Y). That is, the MI is zero iff the
variables are independent.

To gain insight into the meaning of MI, it helps to re-express it in terms of joint and conditional
entropies. One can show (Exercise 2.12) that the above expression is equivalent to the following:

1(X;Y)=H(X)-H(X|Y)=H()-H(Y|X) (2120)

where H (Y'|X) is the conditional entropy, defined as H (Y|X) = > p(z)H (Y|X = z).
Thus we can interpret the MI between X and Y as the reduction in uncertainty about X after
observing Y, or, by symmetry, the reduction in uncertainty about Y after observing X. We will
encounter several applications of MI later in the book. See also Exercises 2.13 and 2.14 for the
connection between MI and correlation coefficients.

A quantity which is closely related to MI is the pointwise mutual information or PMIL For
two events (not random variables) z and y, this is defined as

(XGY) 2 KL (oY) [pC0p() = 30 Y ol) log 2522 219

PMI(z, 9) 2 log p(,y) ~log p(zly) ~log p(y[r) 2121)

p(@)p(y) p(x) p(y)
This measures the discrepancy between these events occuring together compared to what would
be expected by chance. Clearly the MI of X and Y is just the expected value of the PMIL
Interestingly, we can rewrite the PMI as follows:

p(@) % ()

This is the amount we learn from updating the prior p(x) into the posterior p(x|y), or equiva-
lently, updating the prior p(y) into the posterior p(y|x).

plaly) _ ., plyle)

PMI(z,y) = log (2.122)

Mutual information for continuous random variables *

The above formula for MI is defined for discrete random variables. For continuous random
variables, it is common to first discretize or quantize them, by dividing the ranges of each
variable into bins, and computing how many values fall in each histogram bin (Scott 1979). We
can then easily compute the MI using the formula above (see mutualInfoAllPairsMixed for
some code, and miMixedDemo for a demo).

Unfortunately, the number of bins used, and the location of the bin boundaries, can have
a significant effect on the results. One way around this is to try to estimate the MI directly,

60 Chapter 2. Probability

8
m

yrs) O
&

1600

%
8

2
3

800

Life Expectancy (Years) ©

Deaths due to HIV/AIDS

Life Lost to Injuries (%

g
5 10
S
e
S 30 0 — —
- 4 8 12 16 2 4 6 0 1108 2x10% 2x10°
% Dentist Density (per 10,000) Children Per Woman Number of Physicians
e
8
< F s G H
2 g ;\5 §sooo
¢ 2z z =
@ 50 = <
o s
h 8 & g 4000
) 2 [
© y
5% £ u% 2000
L Ty 8 E
= % Q @ =
E] oo g S
- L — = | *
0 0.25 05 075 1 20,000 40,000 0 150 300 20000 40000
MIC Score Income / Person (Int$) Health Exp. / Person (US$) Gross Nat'l Inc / Person (Int$)

Figure 2.22 Left: Correlation coefficient vs maximal information criterion (MIC) for all pairwise relation-
ships in the WHO data. Right: scatter plots of certain pairs of variables. The red lines are non-parametric
smoothing regressions (Section 15.4.6) fit separately to each trend. Source: Figure 4 of (Reshed et al. 2011) .
Used with kind permission of David Reshef and the American Association for the Advancement of Science.

without first performing density estimation (Learned-Miller 2004). Another approach is to try
many different bin sizes and locations, and to compute the maximum MI achieved. This
statistic, appropriately normalized, is known as the maximal information coefficient (MIC)
(Reshed et al. 2011). More precisely, define

maXgeg(a,y) 1(X(G);V(G))
log min(x, y)

m(z,y) = (2123)
where G(x,y) is the set of 2d grids of size x x y, and X (G), Y (G) represents a discretization of
the variables onto this grid. (The maximization over bin locations can be performed efficiently
using dynamic programming (Reshed et al. 2011).) Now define the MIC as

MIC £ max m(z,y) (2.124)
z,y:xy< B
where B is some sample-size dependent bound on the number of bins we can use and still
reliably estimate the distribution ((Reshed et al. 2011) suggest B = N?-%). It can be shown that
the MIC lies in the range [0, 1], where 0 represents no relationship between the variables, and 1
represents a noise-free relationship of any form, not just linear.

Figure 2.22 gives an example of this statistic in action. The data consists of 357 variables
measuring a variety of social, economic, health and political indicators, collected by the World
Health Organization (WHO). On the left of the figure, we see the correlation coefficient (CC)
plotted against the MIC for all 63,566 variable pairs. On the right of the figure, we see scatter
plots for particular pairs of variables, which we now discuss:

* The point marked C has a low CC and a low MIC. The corresponding scatter plot makes it

2.8. Information theory 61

clear that there is no relationship between these two variables (percentage of lives lost to
injury and density of dentists in the population).

* The points marked D and H have high CC (in absolute value) and high MIC, because they
represent nearly linear relationships.

e The points marked E, F, and G have low CC but high MIC. This is because they correspond
to non-linear (and sometimes, as in the case of E and F, non-functional, i.e., one-to-many)
relationships between the variables.

In summary, we see that statistics (such as MIC) based on mutual information can be used
to discover interesting relationships between variables in a way that simpler measures, such as
correlation coefficients, cannot. For this reason, the MIC has been called “a correlation for the
21st century” (Speed 2011).

Exercises

Exercise 2.1 Probabilities are sensitive to the form of the question that was used to generate the answer

(Source: Minka.) My neighbor has two children. Assuming that the gender of a child is like a coin flip,
it is most likely, a priori, that my neighbor has one boy and one girl, with probability 1/2. The other
possibilities—two boys or two girls—have probabilities 1/4 and 1/4.

a. Suppose I ask him whether he has any boys, and he says yes. What is the probability that one child is
a girl?

b. Suppose instead that I happen to see one of his children run by, and it is a boy. What is the probability
that the other child is a girl?

Exercise 2.2 Legal reasoning

(Source: Peter Lee.) Suppose a crime has been committed. Blood is found at the scene for which there is
no innocent explanation. It is of a type which is present in 1% of the population.

a. The prosecutor claims: “There is a 1% chance that the defendant would have the crime blood type if he
were innocent. Thus there is a 99% chance that he guilty”. This is known as the prosecutor’s fallacy.
What is wrong with this argument?

b. The defender claims: “The crime occurred in a city of 800,000 people. The blood type would be
found in approximately 8000 people. The evidence has provided a probability of just 1 in 8000 that
the defendant is guilty, and thus has no relevance.” This is known as the defender’s fallacy. What is
wrong with this argument?

Exercise 2.3 Variance of a sum

Show that the variance of a sum is var [X + Y] = var [X]| 4 var [Y] + 2cov [X, Y], where cov [X,Y]
is the covariance between X and Y’

Exercise 2.4 Bayes rule for medical diagnosis

(Source: Koller.) After your yearly checkup, the doctor has bad news and good news. The bad news is that
you tested positive for a serious disease, and that the test is 99% accurate (i.e., the probability of testing
positive given that you have the disease is 0.99, as is the probability of tetsing negative given that you don’t
have the disease). The good news is that this is a rare disease, striking only one in 10,000 people. What are
the chances that you actually have the disease? (Show your calculations as well as giving the final result.)

62 Chapter 2. Probability

Exercise 2.5 The Monty Hall problem

(Source: Mackay.) On a game show, a contestant is told the rules as follows:

There are three doors, labelled 1, 2, 3. A single prize has been hidden behind one of them. You
get to select one door. Initially your chosen door will not be opened. Instead, the gameshow host
will open one of the other two doors, and he will do so in such a way as not to reveal the prize. For
example, if you first choose door 1, he will then open one of doors 2 and 3, and it is guaranteed
that he will choose which one to open so that the prize will not be revealed.

At this point, you will be given a fresh choice of door: you can either stick with your first choice,
or you can switch to the other closed door. All the doors will then be opened and you will receive
whatever is behind your final choice of door.

Imagine that the contestant chooses door 1 first; then the gameshow host opens door 3, revealing nothing
behind the door, as promised. Should the contestant (a) stick with door 1, or (b) switch to door 2, or (c)
does it make no difference? You may assume that initially, the prize is equally likely to be behind any of
the 3 doors. Hint: use Bayes rule.

Exercise 2.6 Conditional independence

(Source: Koller.)

a. Let H € {1,..., K} be a discrete random variable, and let e1 and ez be the observed values of two
other random variables E; and Es. Suppose we wish to calculate the vector

P(Hlei,e2) = (P(H = 1le1, e2), ..., P(H = Klei, e2))

Which of the following sets of numbers are sufficient for the calculation?
i. P(el,eg), P(H), P(€1|H), P(62|H)
ii. P(61, 62), P(H), P(el, 62|H)
iii. P(ei|H), P(e2|H), P(H)
b. Now suppose we now assume E1 L E»|H (ie, E1 and E» are conditionally independent given H).
Which of the above 3 sets are sufficent now?
Show your calculations as well as giving the final result. Hint: use Bayes rule.

Exercise 2.7 Pairwise independence does not imply mutual independence

We say that two random variables are pairwise independent if

p(X2|X1) = p(X2) (2.125)
and hence
p(X2, X1) = p(X1)p(X2|X1) = p(X1)p(X2) (2.126)

We say that n random variables are mutually independent if

p(Xi|Xs) =p(Xi) VS CA{1,...,n}\{i} @127)
and hence
P(X1m) = [[p(X0) (2.128)
=1

Show that pairwise independence between all pairs of variables does not necessarily imply mutual inde-
pendence. It suffices to give a counter example.

2.8. Information theory 63

Exercise 2.8 Conditional independence iff joint factorizes
In the text we said X L Y|Z iff

p(z,ylz) = p(z|2)p(y|z) (2.129)

for all z,y, z such that p(z) > 0. Now prove the following alternative definition: X | Y'|Z iff there exist
function g and h such that

p(z,ylz) = g(z, 2)h(y,) (2.130)
for all z,y, z such that p(z) > 0.

Exercise 2.9 Conditional independence

(Source: Koller.) Are the following properties true? Prove or disprove. Note that we are not restricting
attention to distributions that can be represented by a graphical model.

a. True or false? (X L WI|Z,Y)AN (X LY|Z)= (X LY, W|Z)
b. True or false? (X LY|Z)A (X LY|W) = (X LY|Z, W)

Exercise 2.10 Deriving the inverse gamma density
Let X ~ Ga(a,b), ie.

Ga(z|a,b) = %x“‘le‘“ (2.131)

Let Y = 1/X. Show that Y ~ IG(a,b), ie.,

IG(z|shape = a,scale = b) = %af('ﬁl)e*b/z (2132)

Hint: use the change of variables formula.

Exercise 2.11 Normalization constant for a 1D Gaussian

The normalization constant for a zero-mean Gaussian is given by

b 22
7 = /a exp (fﬁ) dx (2.133)

where a = —oco and b = co. To compute this, consider its square

b b 2 2
72 = / / exp (—x 2;3’)dzdy (2134)

Let us change variables from cartesian (z,y) to polar (r,0) using x = rcosf and y = rsinf. Since
dzdy = rdrd6, and cos®6 + sin? = 1, we have

27 [e%e) 2
7% = / / 7 exp (—%) drdf (2.135)
0 0 20

Evaluate this integral and hence show Z = o\ﬂ%‘). Hint 1: separate the integral into a product of

two terms, the first of which (involving df) is constant, so is easy. Hint 2: if u = esz/ 207 then
du/dr = —U%re_rz/%z, so the second integral is also easy (since [u'(r)dr = u(r)).

64 Chapter 2. Probability

Exercise 2.12 Expressing mutual information in terms of entropies
Show that

I(X,Y)=H(X) - HX|Y) = HY) - HY|X) (2.136)

Exercise 2.13 Mutual information for correlated normals

(Source: (Cover and Thomas 1991, Q9.3).) Find the mutual information I(X1, X2) where X has a bivariate
normal distribution:

X1 o? pa2
(Xz) ~N (0, (WQ 2 2137)

Evaluate I(X1,X2) for p =1, p = 0 and p = —1 and comment. Hint: The (differential) entropy of a
d-dimensional Gaussian is

h(X) = %mg2 [(27re)d det E] (2.138)
In the 1d case, this becomes
h(X) = log, [2meo?] (2139)

Hint: log(0) = cc.

Exercise 2.14 A measure of correlation (normalized mutual information)
(Source: (Cover and Thomas 1991, Q2.20).) Let X and Y be discrete random variables which are identically
distributed (so H(X) = H(Y)) but not necessarily independent. Define
_ HY|X)

H(X) (2.140)

r=1
a. Show r = Ig&y))
b. Show 0 <r <1
c. When is r = 0?
d. When is r = 1?

Exercise 2.15 MLE minimizes KL divergence to the empirical distribution
Let pemp (2) be the empirical distribution, and let q(x|@) be some model. Show that argmin, KL (pemp||q)
is obtained by ¢(z) = g(z; @), where @ is the MLE. Hint: use non-negativity of the KL divergence.

Exercise 2.16 Mean, mode, variance for the beta distribution

Suppose 6 ~ Beta(a, b). Derive the mean, mode and variance.

Exercise 2.17 Expected value of the minimum

Suppose X,Y are two points sampled independently and uniformly at random from the interval [0, 1].
What is the expected location of the left most point?

3.1

3.2

Generative models for discrete data

Introduction

In Section 2.2.3.2, we discussed how to classify a feature vector x by applying Bayes rule to a
generative classifier of the form

p(y = c[x,0) o< p(x|y = ¢, 0)p(y = c|0) (GA))

The key to using such models is specifying a suitable form for the class-conditional density
p(x|]y = ¢, 0), which defines what kind of data we expect to see in each class. In this chapter,
we focus on the case where the observed data are discrete symbols. We also discuss how to
infer the unknown parameters @ of such models.

Bayesian concept learning

Consider how a child learns to understand the meaning of a word, such as “dog”. Presumably
the child’s parents point out positive examples of this concept, saying such things as, “look at
the cute dog!”, or “mind the doggy”, etc. However, it is very unlikely that they provide negative
examples, by saying “look at that non-dog”. Certainly, negative examples may be obtained during
an active learning process — the child says “look at the dog” and the parent says “that’s a cat,
dear, not a dog” — but psychological research has shown that people can learn concepts from
positive examples alone (Xu and Tenenbaum 2007).

We can think of learning the meaning of a word as equivalent to concept learning, which in
turn is equivalent to binary classification. To see this, define f(z) = 1 if = is an example of the
concept C, and f(z) = 0 otherwise. Then the goal is to learn the indicator function f, which
just defines which elements are in the set C. By allowing for uncertainty about the definition
of f, or equivalently the elements of C, we can emulate fuzzy set theory, but using standard
probability calculus. Note that standard binary classification techniques require positive and
negative examples. By contrast, we will devise a way to learn from positive examples alone.

For pedagogical purposes, we will consider a very simple example of concept learning called
the number game, based on part of Josh Tenenbaum’s PhD thesis (Tenenbaum 1999). The game
proceeds as follows. I choose some simple arithmetical concept C, such as “prime number” or
“a number between 1 and 10”. I then give you a series of randomly chosen positive examples
D = {x1,...,xn} drawn from C, and ask you whether some new test case & belongs to C,
i.e., I ask you to classify Z.

66 Chapter 3. Generative models for discrete data

Examples

16 1
0.5—" I I | I
ok | I | I |I I Il

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

16 8 264 11
05 |
or L1 L ||

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

16 23 19 20 1T
05
of I | | I L L m

L ! L | L ! |
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

Figure 3.1 Empirical predictive distribution averaged over 8 humans in the number game. First two
rows: after seeing D = {16} and D = {60}. This illustrates diffuse similarity. Third row: after
seeing D = {16,8,2,64}. This illustrates rule-like behavior (powers of 2). Bottom row: after seeing
D = {16,23,19,20}. This illustrates focussed similarity (numbers near 20). Source: Figure 5.5 of
(Tenenbaum 1999). Used with kind permission of Josh Tenenbaum.

Suppose, for simplicity, that all numbers are integers between 1 and 100. Now suppose I tell
you “16” is a positive example of the concept. What other numbers do you think are positive?
172 62 322 99? It's hard to tell with only one example, so your predictions will be quite vague.
Presumably numbers that are similar in some sense to 16 are more likely. But similar in what
way? 17 is similar, because it is “close by”, 6 is similar because it has a digit in common,
32 is similar because it is also even and a power of 2, but 99 does not seem similar. Thus
some numbers are more likely than others. We can represent this as a probability distribution,
p(Z|D), which is the probability that & € C given the data D for any Z € {1,...,100}. This
is called the posterior predictive distribution. Figure 3.1(top) shows the predictive distribution
of people derived from a lab experiment. We see that people predict numbers that are similar
to 16, under a variety of kinds of similarity.

Now suppose I tell you that 8, 2 and 64 are also positive examples. Now you may guess that
the hidden concept is “powers of two”. This is an example of induction. Given this hypothesis,
the predictive distribution is quite specific, and puts most of its mass on powers of 2, as shown
in Figure 3.1(third row). If instead I tell you the data is D = {16,23,19,20}, you will get a
different kind of generalization gradient, as shown in Figure 3.1(bottom).

How can we explain this behavior and emulate it in a machine? The classic approach to
induction is to suppose we have a hypothesis space of concepts, H, such as: odd numbers,
even numbers, all numbers between 1 and 100, powers of two, all numbers ending in j (for

3.2.1

3.2.2

3.2. Bayesian concept learning 67

0 < j <9), etc. The subset of H that is consistent with the data D is called the version space.
As we see more examples, the version space shrinks and we become increasingly certain about
the concept (Mitchell 1997).

However, the version space is not the whole story. After seeing D = {16}, there are many
consistent rules; how do you combine them to predict if £ € C? Also, after seeing D =
{16, 8, 2,64}, why did you choose the rule “powers of two” and not, say, “all even numbers”, or
“powers of two except for 32”, both of which are equally consistent with the evidence? We will
now provide a Bayesian explanation for this.

Likelihood

We must explain why we chose Ay, =“powers of two”, and not, say, heven = “even numbers”
after seeing D = {16,8,2,64}, given that both hypotheses are consistent with the evidence.
The key intuition is that we want to avoid suspicious coincidences. If the true concept was
even numbers, how come we only saw numbers that happened to be powers of two?

To formalize this, let us assume that examples are sampled uniformly at random from the
extension of a concept. (The extension of a concept is just the set of numbers that belong
to it, e.g., the extension of heyen is {2,4,6,...,98,100}; the extension of “numbers ending
in 9”is {9,19,...,99}.) Tenenbaum calls this the strong sampling assumption. Given this
assumption, the probability of independently sampling NV items (with replacement) from h is
given by

- [ts] - 3]

This crucial equation embodies what Tenenbaum calls the size principle, which means the
model favors the simplest (smallest) hypothesis consistent with the data. This is more commonly
known as Occam’s razor.!

To see how it works, let D = {16}. Then p(D|htwo) = 1/6, since there are only 6 powers
of two less than 100, but p(D|heven) = 1/50, since there are 50 even numbers. So the
likelihood that h = hyye is higher than if A = heye,. After 4 examples, the likelihood of Agye
is (1/6)* = 7.7 x 10~*, whereas the likelihood of Aeyen is (1/50)* = 1.6 x 10~7. This is
a likelihood ratio of almost 5000:1 in favor of htwo. This quantifies our earlier intuition that
D ={16,8,2,64} would be a very suspicious coincidence if generated by heyen-

Prior

Suppose D = {16,8,2,64}. Given this data, the concept i’ =“powers of two except 32" is
more likely than A =“powers of two”, since 4’ does not need to explain the coincidence that 32
is missing from the set of examples.

However, the hypothesis i/ =“powers of two except 32" seems “conceptually unnatural”. We
can capture such intution by assigning low prior probability to unnatural concepts. Of course,
your prior might be different than mine. This subjective aspect of Bayesian reasoning is a
source of much controversy, since it means, for example, that a child and a math professor

1. William of Occam (also spelt Ockham) was an English monk and philosopher, 1288-1348.

3.2.3

68 Chapter 3. Generative models for discrete data

will reach different answers. In fact, they presumably not only have different priors, but also
different hypothesis spaces. However, we can finesse that by defining the hypothesis space of
the child and the math professor to be the same, and then setting the child’s prior weight to be
zero on certain “advanced” concepts. Thus there is no sharp distinction between the prior and
the hypothesis space.

Although the subjectivity of the prior is controversial, it is actually quite useful. If you are
told the numbers are from some arithmetic rule, then given 1200, 1500, 900 and 1400, you may
think 400 is likely but 1183 is unlikely. But if you are told that the numbers are examples of
healthy cholesterol levels, you would probably think 400 is unlikely and 1183 is likely. Thus we
see that the prior is the mechanism by which background knowledge can be brought to bear on
a problem. Without this, rapid learning (i.e., from small samples sizes) is impossible.

So, what prior should we use? For illustration purposes, let us use a simple prior which
puts uniform probability on 30 simple arithmetical concepts, such as “even numbers”, “odd
numbers”, “prime numbers”, “numbers ending in 9”, etc. To make things more interesting, we
make the concepts even and odd more likely apriori. We also include two “unnatural” concepts,
namely “powers of 2, plus 37" and “powers of 2, except 32", but give them low prior weight. See
Figure 3.2(a) for a plot of this prior. We will consider a slightly more sophisticated prior later on.

Posterior
The posterior is simply the likelihood times the prior, normalized. In this context we have

i)~ PR (1D € hy/Af a3
DwenP(DN) e p(WUD € 1) /|0 [V

where I(D € h) is 1 iff (iff and only if) all the data are in the extension of the hypothesis
h. Figure 3.2 plots the prior, likelihood and posterior after seeing D = {16}. We see that the
posterior is a combination of prior and likelihood. In the case of most of the concepts, the prior
is uniform, so the posterior is proportional to the likelihood. However, the “unnatural” concepts
of “powers of 2, plus 37" and “powers of 2, except 32” have low posterior support, despite having
high likelihood, due to the low prior. Conversely, the concept of odd numbers has low posterior
support, despite having a high prior, due to the low likelihood.

Figure 3.3 plots the prior, likelihood and posterior after seeing D = {16, 8,2,64}. Now the
likelihood is much more peaked on the powers of two concept, so this dominates the posterior.
Essentially the learner has an aha moment, and figures out the true concept. (Here we see the
need for the low prior on the unnatural concepts, otherwise we would have overfit the data and
picked “powers of 2, except for 32”.)

In general, when we have enough data, the posterior p(h|D) becomes peaked on a single
concept, namely the MAP estimate, i.e.,

p(h|D) — 5ﬁMAP (h) (34)

where hMAP
defined by

= argmax;, p(h|D) is the posterior mode, and where ¢ is the Dirac measure

1 ifzcAd
6x(A)—{ 0 ifrdA (3.5)

3.2. Bayesian concept learning 69

data =16
35 T 35

even
odd
squares 30 —130 -
mult of 3
mult of 4
mult of 5
mult of 6
mult of 7 25 125 -
mult of 8 |] |]
mult of 9
mult of 10
endsin 1
endsin 2 20 —20 -
endsin3
endsin 4
endsin5
ends in 6 |]]
endsin7 15 15F -
endsin 8
endsin9

powers of 2|
powers of 3
powers of 4 10 -10 =

powers of 5
powers of 6
powers of 7|
powers of 8

powers of 9| 5
powers of 10|
all

powers of 2 + {37
powers of 2 — {32]
I I 0 I 0 I
0 0.1 020 0.2 040 0.2 0.4
prior lik post

Figure 3.2 Prior, likelihood and posterior for D = {16}. Based on (Tenenbaum 1999). Figure generated
by numbersGame.

Note that the MAP estimate can be written as
AMAP — argmax p(D|h)p(h) = argmax [log p(D|h) + log p(h)] (3.6)
h h

Since the likelihood term depends exponentially on N, and the prior stays constant, as we get
more and more data, the MAP estimate converges towards the maximum likelihood estimate
or MLE:

h™e & argmax p(D|h) = argmaxlog p(D|h) 3.7
b h

In other words, if we have enough data, we see that the data overwhelms the prior. In this

70 Chapter 3. Generative models for discrete data

data=16 8 2 64
35 T 35

even
odd
squares 30 —30 -
mult of 3
mult of 4
mult of 5
mult of 6
mult of 7 251 125 -
mult of 8
mult of 9
mult of 10
endsin 1
endsin 2 20 —20 -
endsin3
endsin 4
endsin5
endsin 6
endsin7 15 15F -
endsin 8
endsin9
powers of 2]]
powers of 3
powers of 4 10 10 =
powers of 5
powers of 6
powers of 7|
powers of 8
powers of 9| 5r- <15 -
powers of 10|
all

powers of 2 + {37
powers of 2 — {32]
I] 1 I

0 0
0 0.1 020 1 20 0.5 1

Figure 3.3 Prior, likelihood and posterior for D = {16,8,2,64}. Based on (Tenenbaum 1999). Figure
generated by numbersGame.

case, the MAP estimate converges towards the MLE.

If the true hypothesis is in the hypothesis space, then the MAP/ ML estimate will converge
upon this hypothesis. Thus we say that Bayesian inference (and ML estimation) are consistent
estimators (see Section 6.4.1 for details). We also say that the hypothesis space is identifiable in
the limit, meaning we can recover the truth in the limit of infinite data. If our hypothesis class
is not rich enough to represent the “truth” (which will usually be the case), we will converge
on the hypothesis that is as close as possible to the truth. However, formalizing this notion of
“closeness” is beyond the scope of this chapter.

3.2.4

3.2. Bayesian concept learning 71

05—

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

powers of 4 ® ® *

powersof2- 90— — 06— — —€& — —————————— ¢ ————————————————

endsinf——@¢—— @ — & — & — @& ——— & —— & —— & —— & —— 0 —

squares —@—@&—@&— @& ————— & ——— @& ——————— & —————————— @& @&

even 00 0000000000000 00000000000000000000000000000000000

mutof§—— &—®—®—0—0—90 —0 —— 9o — 0 & 0 0 —

mutof4——0—0—0—0—0—0 9000000 0 0 0 90 0 0 0 0 & o o 0 ¢

all q

powers of 2 - {32} -@-0—@ - . q
powersof 2+ (37})L@ @ @ . e o] [S —
0 05 1

p(h|16)

Figure 3.4 Posterior over hypotheses and the corresponding predictive distribution after seeing one
example, D = {16}. A dot means this number is consistent with this hypothesis. The graph p(h|D) on
the right is the weight given to hypothesis h. By taking a weighed sum of dots, we get p(z € C|D) (top).
Based on Figure 2.9 of (Tenenbaum 1999). Figure generated by numbersGame.

Posterior predictive distribution

The posterior is our internal belief state about the world. The way to test if our beliefs are
justified is to use them to predict objectively observable quantities (this is the basis of the
scientific method). Specifically, the posterior predictive distribution in this context is given by

p(& € C|D) = p(y = 1|2, h)p(h|D) 3.8)
h

This is just a weighted average of the predictions of each individual hypothesis and is called
Bayes model averaging (Hoeting et al. 1999). This is illustrated in Figure 3.4. The dots at the
bottom show the predictions from each hypothesis; the vertical curve on the right shows the
weight associated with each hypothesis. If we multiply each row by its weight and add up, we
get the distribution at the top.

When we have a small and/or ambiguous dataset, the posterior p(h|D) is vague, which
induces a broad predictive distribution. However, once we have “figured things out”, the posterior
becomes a delta function centered at the MAP estimate. In this case, the predictive distribution

3.2.5

3.3

72 Chapter 3. Generative models for discrete data

becomes

p(& € C|D) = p(E|h)5; (h) = p(E|h) (3.9)
h

This is called a plug-in approximation to the predictive density and is very widely used, due
to its simplicity. However, in general, this under-represents our uncertainty, and our predictions
will not be as “smooth” as when using BMA. We will see more examples of this later in the book.

Although MAP learning is simple, it cannot explain the gradual shift from similarity-based
reasoning (with uncertain posteriors) to rule-based reasoning (with certain posteriors). For
example, suppose we observe D = {16}. If we use the simple prior above, the minimal
consistent hypothesis is “all powers of 4”, so only 4 and 16 get a non-zero probability of being
predicted. This is of course an example of overfitting. Given D = {16,8,2,64}, the MAP
hypothesis is “all powers of two”. Thus the plug-in predictive distribution gets broader (or stays
the same) as we see more data; it starts narrow, but is forced to broaden as it seems more data.
In contrast, in the Bayesian approach, we start broad and then narrow down as we learn more,
which makes more intuitive sense. In particular, given D = {16}, there are many hypotheses
with non-negligible posterior support, so the predictive distribution is broad. However, when we
see D = {16, 8, 2,64}, the posterior concentrates its mass on one hypothesis, so the predictive
distribution becomes narrower. So the predictions made by a plug-in approach and a Bayesian
approach are quite different in the small sample regime, although they converge to the same
answer as we see more data.

A more complex prior

To model human behavior, Tenenbaum used a slightly more sophisticated prior which was de-
rived by analysing some experimental data of how people measure similarity between numbers;
see (Tenenbaum 1999, p208) for details. The result is a set of arithmetical concepts similar to
those mentioned above, plus all intervals between n and m for 1 < n,m < 100. (Note that
these hypotheses are not mutually exclusive.) Thus the prior is a mixture of two priors, one
over arithmetical rules, and one over intervals:

p(h) = mopryles (M) + (1 = m0)Pinterval () (3.10)

The only free parameter in the model is the relative weight, 7, given to these two parts of the
prior. The results are not very sensitive to this value, so long as mg > 0.5, reflecting the fact
that people are more likely to think of concepts defined by rules. The predictive distribution
of the model, using this larger hypothesis space, is shown in Figure 3.5. It is strikingly similar
to the human predictive distribution, shown in Figure 3.1, even though it was not fit to human
data (modulo the choice of hypothesis space).

The beta-binomial model

The number game involved inferring a distribution over a discrete variable drawn from a finite
hypothesis space, h € #, given a series of discrete observations. This made the computations
particularly simple: we just needed to sum, multiply and divide. However, in many applications,
the unknown parameters are continuous, so the hypothesis space is (some subset) of R, where

3.3.1

3.3. The beta-binomial model 73

Examples

16 T
0.5 I
orl I | Ill |||III||||| Ill | I I . | I L |

60 T
05h
o,

L 1 L L [L
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

16 8 264 [
05f
or]]] m

T T T T
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

16 23 19 20 11
05
Us I I | I | [e l Il

T R T I Lo I I
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100

Figure 3.5 Predictive distributions for the model using the full hypothesis space. Compare to Figure 3.1.
The predictions of the Bayesian model are only plotted for those values of % for which human data is
available; this is why the top line looks sparser than Figure 3.4. Source: Figure 5.6 of (Tenenbaum 1999).
Used with kind permission of Josh Tenenbaum.

K is the number of parameters. This complicates the mathematics, since we have to replace
sums with integrals. However, the basic ideas are the same.

We will illustrate this by considering the problem of inferring the probability that a coin shows
up heads, given a series of observed coin tosses. Although this might seem trivial, it turns out
that this model forms the basis of many of the methods we will consider later in this book,
including naive Bayes classifiers, Markov models, etc. It is historically important, since it was the
example which was analyzed in Bayes’ original paper of 1763. (Bayes’ analysis was subsequently
generalized by Pierre-Simon Laplace, creating what we now call “Bayes rule” — see (Stigler 1986)
for further historical details.)

We will follow our now-familiar recipe of specifying the likelihood and prior, and deriving the
posterior and posterior predictive.

Likelihood

Suppose X; ~ Ber(f), where X; = 1 represents “heads”, X; = 0 represents “tails”, and
0 € [0,1] is the rate parameter (probability of heads). If the data are iid, the likelihood has the
form

p(D|0) = 6N (1 —6)N° @.10)

3.3.2

74 Chapter 3. Generative models for discrete data

where we have N; = Zf\il I(z; = 1) heads and Ny = Zi\;l I(z; = 0) tails. These two counts
are called the sufficient statistics of the data, since this is all we need to know about D to
infer 6. (An alternative set of sufficient statistics are N; and N = Ny + N;.)

More formally, we say s(D) is a sufficient statistic for data D if p(@|D) = p(0|s(data)). If
we use a uniform prior, this is equivalent to saying p(D]0 x p(s(D)|@). Consequently, if we
have two datasets with the same sufficient statistics, we will infer the same value for 6.

Now suppose the data consists of the count of the number of heads N; observed in a fixed
number N = N; + Ny of trials. In this case, we have N7 ~ Bin(N, 6), where Bin represents
the binomial distribution, which has the following pmf:

Bin(k|n,) £ (Z) k(1 —)"+ (312)

Since Z) is a constant independent of 6, the likelihood for the binomial sampling model is the

same as the likelihood for the Bernoulli model. So any inferences we make about 6 will be the
same whether we observe the counts, D = (N1, N), or a sequence of trials, D = {x1,...,2n}.

Prior

We need a prior which has support over the interval [0, 1]. To make the math easier, it would
convenient if the prior had the same form as the likelihood, i.e., if the prior looked like

p(f) o 671 (1 — 6)72 (3.13)

for some prior parameters 7; and 7,. If this were the case, then we could easily evaluate the
posterior by simply adding up the exponents:

p(6) x p(D|0)p(6) = OV (1 — B)Nogri (1 — 9)2 = gN1+m (1 —)N+ (3.14)

When the prior and the posterior have the same form, we say that the prior is a conjugate
prior for the corresponding likelihood. Conjugate priors are widely used because they simplify
computation, and are easy to interpret, as we see below.

In the case of the Bernoulli, the conjugate prior is the beta distribution, which we encountered
in Section 2.4.5:

Beta(fa,b) oc 271 (1 —0)°~1 (3.15)

The parameters of the prior are called hyper-parameters. We can set them in order to encode
our prior beliefs. For example, to encode our beliefs that § has mean 0.7 and standard deviation
0.2, we set ¢ = 2.975 and b = 1.275 (Exercise 3.15). Or to encode our beliefs that § has mean
0.15 and that we think it lives in the interval (0.05,0.30) with probability, then we find a = 4.5
and b = 25.5 (Exercise 3.16).

If we know “nothing” about 6, except that it lies in the interval [0, 1], we can use a uni-
form prior, which is a kind of uninformative prior (see Section 5.4.2 for details). The uniform
distribution can be represented by a beta distribution with a = b = 1.

3.3.3

3.3. The beta-binomial model 75

Figure 3.6 (a) Updating a Beta(2, 2) prior with a Binomial likelihood with sufficient statistics N1 =
3,No = 17 to yield a Beta(519) posterior. (b) Updating a Beta(5, 2) prior with a Binomial likeli-
hood with sufficient statistics N1 = 11,Ny = 13 to yield a Beta(16, 15) posterior. Figure generated by
binomialBetaPosteriorDemo.

Posterior

If we multiply the likelihood by the beta prior we get the following posterior (following Equa-
tion 3.14):

p(0|D) o Bin(N1]0, Ny + N1)Beta(f|a, b)Beta(0| N1 + a, No + b) (3.16)

In particular, the posterior is obtained by adding the prior hyper-parameters to the empirical
counts. For this reason, the hyper-parameters are known as pseudo counts. The strength of the
prior, also known as the effective sample size of the prior, is the sum of the pseudo counts,
a + b; this plays a role analogous to the data set size, Ny + Ny = N.

Figure 3.6(a) gives an example where we update a weak Beta(2,2) prior with a peaked likelihood
function, corresponding to a large sample size; we see that the posterior is essentially identical
to the likelihood: since the data has overwhelmed the prior. Figure 3.6(b) gives an example
where we update a strong Beta(5,2) prior with a peaked likelihood function; now we see that the
posterior is a “compromise” between the prior and likelihood.

Note that updating the posterior sequentially is equivalent to updating in a single batch.
To see this, suppose we have two data sets D, and D, with sufficient statistics N{*, N§ and
NY NE. Let Ny = N¢ + NP and Ny = N¢ + N be the sufficient statistics of the combined
datasets. In batch mode we have

p(0|Dy, Dy) o Bin(N1|0, Ny + No)Beta(f|a,b) o< Beta(0| Ny + a, No + b) 3.17)

In sequential mode, we have

p(0|Da,Dy) o p(Ds|0)p(0Da) (3.18)
o Bin(N?|0, N? 4+ N&)Beta(0| Ny + a, N§ + b) (3.19)
o Beta(d] N{ + N? +a, N¢ + N; +b) (3.20)

This makes Bayesian inference particularly well-suited to online learning, as we will see later.

3.3.3.1

3.3.3.2

76 Chapter 3. Generative models for discrete data

Posterior mean and mode

From Equation 2.62, the MAP estimate is given by

~ a+N1—1
0 = — 3.21
MAP a+b+N—-2 3.2

If we use a uniform prior, then the MAP estimate reduces to the MLE, which is just the empirical
fraction of heads:

. N
Orvire = Wl (3.22)

This makes intuitive sense, but it can also be derived by applying elementary calculus to
maximize the likelihood function in Equation 3.11. (Exercise 3.1).

By contrast, the posterior mean is given by,

— a+ N

i + Ny

— pa (3.23)

This difference between the mode and the mean will prove important later.

We will now show that the posterior mean is convex combination of the prior mean and the
MLE, which captures the notion that the posterior is a compromise between what we previously
believed and what the data is telling us.

Let «g = a + b be the equivalent sample size of the prior, which controls its strength, and
let the prior mean be my = a/«g. Then the posterior mean is given by

E[0|D] = aoj?\?;r;é\h - Nioaoml + Nfao]]\\7; = Amy+ (1= Nbyre (324)
where A = 92— is the ratio of the prior to posterior equivalent sample size. So the weaker the
prior, the smaller is)\, and hence the closer the posterior mean is to the MLE. One can show
similarly that the posterior mode is a convex combination of the prior mode and the MLE, and
that it too converges to the MLE.

Posterior variance

The mean and mode are point estimates, but it is useful to know how much we can trust them.
The variance of the posterior is one way to measure this. The variance of the Beta posterior is
given by

(at+ N)(b+ No)
ar |0|D] = 3.25
var P17 (@+ N1+0b+ No)*(a+ N1 +b+No+1) .29
We can simplify this formidable expression in the case that N > a, b, to get
NiNy 6(1—6
var [0|D] ~ 2 = (1=96) (3.26)

NNN N
where 0 is the MLE. Hence the “error bar” in our estimate (i.e., the posterior standard deviation),
is given by

var [0|D] ~ (3.27)

3.3.4

3.3.4.1

3.3. The beta-binomial model 77

We see that the uncertainty goes down at a rate of 1/v/N. Note, however, that the uncertainty
(variance) is maximized when 6 = 0.5, and is minimized when 8 is close to 0 or 1. This means
it is easier to be sure that a coin is biased than to be sure that it is fair.

Posterior predictive distribution

So far, we have been focusing on inference of the unknown parameter(s). Let us now turn our
attention to prediction of future observable data.

Consider predicting the probability of heads in a single future trial under a Beta(a, b) poste-
rior. We have

p(z = 1|D) /0 p(xz = 1|0)p(0|D)do (3.28)

a
a+b

Thus we see that the mean of the posterior predictive distribution is equivalent (in this case) to
plugging in the posterior mean parameters: p(Z|D) = Ber(zZ|E [0|D]).

1
. / 0 Beta(]a, b)d0 — E[0]D] = (3.29)
0

Overfitting and the black swan paradox

Suppose instead that we plug-in the MLE, i.e., we use p(Z|D) ~ Ber(z|0y;). Unfortunately,
this approximation can perform quite poorly when the sample size is small. For example,
suppose we have seen N = 3 tails in a row. The MLE is § = 0/3 = 0, since this makes the
observed data as probable as possible. However, using this estimate, we predict that heads are
impossible. This is called the zero count problem or the sparse data problem, and frequently
occurs when estimating counts from small amounts of data. One might think that in the era
of “big data”, such concerns are irrelevant, but note that once we partition the data based on
certain criteria — such as the number of times a specific person has engaged in a specific activity
— the sample sizes can become much smaller. This problem arises, for example, when trying
to perform personalized recommendation of web pages. Thus Bayesian methods are still useful,
even in the big data regime (Jordan 2011).

The zero-count problem is analogous to a problem in philosophy called the black swan
paradox. This is based on the ancient Western conception that all swans were white. In
that context, a black swan was a metaphor for something that could not exist. (Black swans
were discovered in Australia by European explorers in the 17th Century.) The term “black swan
paradox” was first coined by the famous philosopher of science Karl Popper; the term has also
been used as the title of a recent popular book (Taleb 2007). This paradox was used to illustrate
the problem of induction, which is the problem of how to draw general conclusions about the
future from specific observations from the past.

Let us now derive a simple Bayesian solution to the problem. We will use a uniform prior, so
a = b = 1. In this case, plugging in the posterior mean gives Laplace’s rule of succession

. Ni+1
- Ny + No+2

This justifies the common practice of adding 1 to the empirical counts, normalizing and then
plugging them in, a technique known as add-one smoothing. (Note that plugging in the MAP

p(Z =1|D) (3.30)

3.3.4.2

3.4

78 Chapter 3. Generative models for discrete data

Ni+a—1

parameters would not have this smoothing effect, since the mode has the form 0 = Niati—3

which becomes the MLE if a = b = 1))
Predicting the outcome of multiple future trials

Suppose now we were interested in predicting the number of heads, z, in M future trials. This
is given by

1
p(z|D, M) = / Bin(z|6, M)Beta(f|a, b)dd (331
0
o M 1 ! x M—xzpa—1 b—1
- (x> B(a’b)/o 6(1 — 6)M—=9o=1(1 — 6)"~'dh (3.32)

We recognize the integral as the normalization constant for a Beta(a+xz, M —xz+b) distribution.
Hence

1
/ 0°(1 —0)M-=92=1(1 — 0)*"'dd = B(x + a, M — 2 + b) (3.33)
0

Thus we find that the posterior predictive is given by the following, known as the (compound)
beta-binomial distribution:

M\ B(x+a,M —x+b)
x B(a,b)

Bb(x|a,b, M) = < (3.34)

This distribution has the following mean and variance

B a _ Mab (a+b+ M)
]E[x]_Ma+b’ Var["JE]_(aij)? a+b+1 (335

If M =1, and hence x € {0, 1}, we see that the mean becomes E [|D] = p(z = 1|D) =
which is consistent with Equation 3.29.

This process is illustrated in Figure 3.7(a). We start with a Beta(2,2) prior, and plot the
posterior predictive density after seeing Ny = 3 heads and Ny = 17 tails. Figure 3.7(b) plots
a plug-in approximation using a MAP estimate. We see that the Bayesian prediction has longer
tails, spreading its probablity mass more widely, and is therefore less prone to overfitting and
blackswan type paradoxes.

_a
a+b’

The Dirichlet-multinomial model

In the previous section, we discussed how to infer the probability that a coin comes up heads.
In this section, we generalize these results to infer the probability that a dice with K sides
comes up as face k. This might seem like another toy exercise, but the methods we will study
are widely used to analyse text data, biosequence data, etc., as we will see later.

3.4. The Dirichlet-multinomial model 79

posterior predictive plugin predictive

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

() (b)

Figure 3.7 (a) Posterior predictive distributions after seeing N1 = 3, Ny = 17. (b) Plugin approximation.
Figure generated by betaBinomPostPredDemo.

3.4.1 Likelihood

Suppose we observe N dice rolls, D = {z1,...,2n}, where z; € {1,..., K}. If we assume
the data is iid, the likelihood has the form

K
p(@lo) = J[eo (3.36)
k=1

where Nj, = Zi\il I(y; = k) is the number of times event k occured (these are the sufficient
statistics for this model). The likelihood for the multinomial model has the same form, up to an
irrelevant constant factor.

3.4.2 Prior

Since the parameter vector lives in the K'-dimensional probability simplex, we need a prior that
has support over this simplex. Ideally it would also be conjugate. Fortunately, the Dirichlet
distribution (Section 2.5.4) satisfies both criteria. So we will use the following prior:

K
Dir(fla) = —— ['(xe s (3.37)
(l) B(a) llrk K)
3.4.3 Posterior

Multiplying the likelihood by the prior, we find that the posterior is also Dirichlet:

p(0|D) o p(D|O)p(6) (3.38)
K K

o [eept =T opet (3.39)
k=1 k=1

= Dir(8la; + Ny,...,ax + Nk) (3.40)

80 Chapter 3. Generative models for discrete data

We see that the posterior is obtained by adding the prior hyper-parameters (pseudo-counts) «
to the empirical counts Nj.

We can derive the mode of this posterior (i.e., the MAP estimate) by using calculus. However,
we must enforce the constraint that), §, = 1. We can do this by using a Lagrange
multiplier. The constrained objective function, or Lagrangian, is given by the log likelihood
plus log prior plus the constraint:

06,)) = Y Nilogb+ > (ar —1)logby + A (1 -y 9k> (3.41)
k k k

To simplify notation, we define N} £ Ny, + oy, — 1. Taking derivatives with respect to A yields
the original constraint:

o
3 = (1 - zk:ek> =0 (3.42)

Taking derivatives with respect to 6y, yields

ot N,

= Dk 3.43
0 g~ A=0 (3.43)
N, = Ao (3.44)

We can solve for A using the sum-to-one constraint:

SN = A 6k (3.45)
k k
N+ag—K = A (3.46)

where oy = 22{:1 ay, is the equivalent sample size of the prior. Thus the MAP estimate is
given by

G = Dot 1 (347)
N+ay— K
which is consistent with Equation 2.77. If we use a uniform prior, aj, = 1, we recover the MLE:
0, = Ny/N (3.48)
This is just the empirical fraction of times face & shows up.
2. We do not need to explicitly enforce the constraint that 8, > 0 since the gradient of the objective has the form

Ny /0 — X; so negative values would reduce the objective, rather than maximize it. (Of course, this does not preclude
setting 0, = 0, and indeed this is the optimal solution if Ny = 0 and o, = 1.)

3.4.4

3.4.4.1

3.4. The Dirichlet-multinomial model 81

Posterior predictive

The posterior predictive distribution for a single multinoulli trial is given by the following
expression:

p(X = D) = / p(X = j10)p(0]D)d6 (3.49)

i+ N + N
B / 0,p(0;|D)db; = E[6,/D] = 2 — 2T (3.50)

Yoplar+Ng) ag+ N
where 0_; are all the components of 8 except 6. See also Exercise 3.13.

The above expression avoids the zero-count problem, just as we saw in Section 3.3.4.1. In
fact, this form of Bayesian smoothing is even more important in the multinomial case than the
binary case, since the likelihood of data sparsity increases once we start partitioning the data
into many categories.

Worked example: language models using bag of words

One application of Bayesian smoothing using the Dirichlet-multinomial model is to language
modeling, which means predicting which words might occur next in a sequence. Here we
will take a very simple-minded approach, and assume that the 'th word, X; € {1,..., K}, is
sampled independently from all the other words using a Cat(0) distribution. This is called the
bag of words model. Given a past sequence of words, how can we predict which one is likely
to come next?

For example, suppose we observe the following sequence (part of a children’s nursery rhyme):

Mary had a little lamb, little lamb, little lamb,
Mary had a little lamb, its fleece as white as snow

Furthermore, suppose our vocabulary consists of the following words:

mary lamb little big fleece white black snow rain unk
1 2 3 4 b5 6 7 8 9 10

Here unk stands for unknown, and represents all other words that do not appear elsewhere on
the list. To encode each line of the nursery rhyme, we first strip off punctuation, and remove
any stop words such as “@”, “as”, “the”, etc. We can also perform stemming, which means
reducing words to their base form, such as stripping off the final s in plural words, or the ing
from verbs (e.g., running becomes run). In this example, no words need stemming. Finally, we

replace each word by its index into the vocabulary to get:

1
1

3232

110 3 2
110 32 105 10 6 8

We now ignore the word order, and count how often each word occurred, resulting in a
histogram of word counts:

3.5

82 Chapter 3. Generative models for discrete data

Token | 1 2 3 4 5 6 7 8 9 10
Word | mary lamb little big fleece white black snow rain unk
Count | 2 4 4 0 1 1 0 1 0 4

Denote the above counts by N;. If we use a Dir(a) prior for 6, the posterior predictive is
just
aj + N; 1+ N;

p<X:j|D):E[9j|D]:Z ay + N 10+ 17 52
g &g J

If we set a; = 1, we get
p(X = j|D) = (3/27,5/27,5/27,1/27,2/27,2/27,1/27,2/27,1/27,5/27) (3.53)

The modes of the predictive distribution are X = 2 (“lamb”) and X = 10 (“unk”). Note that the
words “big”, “black” and “rain” are predicted to occur with non-zero probability in the future,
even though they have never been seen before. Later on we will see more sophisticated language
models.

Naive Bayes classifiers

In this section, we discuss how to classify vectors of discrete-valued features, x € {1,..., K }D ,
where K is the number of values for each feature, and D is the number of features. We will use
a generative approach. This requires us to specify the class conditional distribution, p(x|y = ¢).
The simplest approach is to assume the features are conditionally independent given the class
label. This allows us to write the class conditional density as a product of one dimensional
densities:

D
p(xly = ¢,0) = [[px;ly = c,0,c) (3.54)

j=1

The resulting model is called a naive Bayes classifier (NBC).

The model is called “naive” since we do not expect the features to be independent, even
conditional on the class label. However, even if the naive Bayes assumption is not true, it often
results in classifiers that work well (Domingos and Pazzani 1997). One reason for this is that the
model is quite simple (it only has O(C'D) parameters, for C' classes and D features), and hence
it is relatively immune to overfitting.

The form of the class-conditional density depends on the type of each feature. We give some
possibilities below:

e In the case of real-valued features, we can use the Gaussian distribution: p(x|y = ¢,0) =
HJD:1 N(xjlpje, 03.), where ;. is the mean of feature j in objects of class ¢, and o7, is its
variance.

* In the case of binary features, z; € {0,1}, we can use the Bernoulli distribution: p(x|y =
¢,0) = Hle Ber(zj|u c), where pj. is the probability that feature j occurs in class c.
This is sometimes called the multivariate Bernoulli naive Bayes model. We will see an
application of this below.

3.5.1

3.5.1.1

3.5. Naive Bayes classifiers 83

e In the case of categorical features, z; € {1,..., K}, we can model use the multinoulli
distribution: p(x|ly = ¢,0) = H]D:l Cat(z;|p;.), where p;. is a histogram over the K
possible values for z; in class c.

Obviously we can handle other kinds of features, or use different distributional assumptions.
Also, it is easy to mix and match features of different types.

Model fitting

We now discuss how to “train” a naive Bayes classifier. This usually means computing the MLE
or the MAP estimate for the parameters. However, we will also discuss how to compute the full
posterior, p(8|D).

MLE for NBC

The probability for a single data case is given by

p(xi,9:10) = p(yilm) [[p(wi510,) = [7%= T] T [p(wis1650) = (3.55)
J ¢ i e

Hence the log-likelihood is given by

C
>3 logp(wi;165e) (3.56)

D
j=1 c=11i:y;=c

C
logp(D|O) = ZNC log m. +
c=1 g
We see that this expression decomposes into a series of terms, one concerning 7, and DC'

terms containing the 6;.’s. Hence we can optimize all these parameters separately.
From Equation 3.48, the MLE for the class prior is given by

Fo = =< (3.57)

where N, £ 3", I(y; =) is the number of examples in class c.

The MLE for the likelihood depends on the type of distribution we choose to use for each
feature. For simplicity, let us suppose all features are binary, so z;|y = ¢ ~ Ber(6,.). In this
case, the MLE becomes

~ N

O;c = N—] (3.58)

It is extremely simple to implement this model fitting procedure: See Algorithm 8 for some
pseudo-code (and naiveBayesFit for some Matlab code). This algorithm obviously takes
O(ND) time. The method is easily generalized to handle features of mixed type. This simplicity
is one reason the method is so widely used.

Figure 3.8 gives an example where we have 2 classes and 600 binary features, representing the
presence or absence of words in a bag-of-words model. The plot visualizes the 6. vectors for the
two classes. The big spike at index 107 corresponds to the word “subject”, which occurs in both
classes with probability 1. (In Section 3.5.4, we discuss how to “filter out” such uninformative
features.)

3.5.1.2

84 Chapter 3. Generative models for discrete data

Algorithm 3.1: Fitting a naive Bayes classifier to binary features
1 NCZO,NJ‘C:O;
2 fori=1:N do

3 ¢ = y; I Class label of #'th example;
4 N.:=N.+1;
5 for j=1:D do
6 if 2;; = 1 then
7 L LNjc::Njc'f'l
8 A= 0 = FF
1 ‘ ‘ plsTly=1) ‘ ‘ 1 ‘ ‘ plsTly=2)
0.9F 1 0.9F
0.8F 1 0.8
0.7 A 0.7
0.6 A 0.6+
0.5F
041
031
0.2
0O 100 200

Figure 3.8 Class conditional densities p(x; = 1|y = ¢) for two document classes, corresponding to “X
windows” and “MS windows”. Figure generated by naiveBayesBowDemo.

Bayesian naive Bayes

The trouble with maximum likelihood is that it can overfit. For example, consider the example
in Figure 3.8: the feature corresponding to the word “subject” (call it feature j) always occurs
in both classes, so we estimate éjc = 1. What will happen if we encounter a new email which
does not have this word in it? Our algorithm will crash and burn, since we will find that
p(y = ¢|x,0) = 0 for both classes! This is another manifestation of the black swan paradox
discussed in Section 3.3.4.1

A simple solution to overfitting is to be Bayesian. For simplicity, we will use a factored prior:

D C
p0) = p(m) [T1]r050) (3.59)

j=le=1

We will use a Dir(a) prior for 7w and a Beta(f, 51) prior for each 6,.. Often we just take
a =1 and 8 = 1, corresponding to add-one or Laplace smoothing.

3.5. Naive Bayes classifiers 85

Combining the factored likelihood in Equation 3.56 with the factored prior above gives the
following factored posterior:

D C
p(6|D) = p(x|D) H H 0;c[D) (3.60)
p(w|D) = D1r(N1 +aj...,Ne+ac) (3.61)
p(0elD) = Beta((Ne — Nje) + Bo, Nje + 1) (3.62)

In other words, to compute the posterior, we just update the prior counts with the empirical
counts from the likelihood. Tt is straightforward to modify algorithm 8 to handle this version of
model “fitting”.

3.5.2 Using the model for prediction

At test time, the goal is to compute

D
ply=c|x,D) o« p(y=c|D) Hp(xj|y =¢,D) (3.63)
j=1
The correct Bayesian procedure is to integrate out the unknown parameters:
ply =c|x,D) [/ Cat(y = c|7r)p(7r|’D)d7r] (3.64)
D
II U Ber(z;ly =c, jS)p(Ojch)] (3.65)
j=1

Fortunately, this is easy to do, at least if the posterior is Dirichlet. In particular, from Equa-
tion 3.51, we know the posterior predictive density can be obtained by simply plugging in the
posterior mean parameters 6. Hence

D
ply =cx,D) o T [[(0,e) =1 (1 —;0) =0 (3.66)

j=1

a N’c + Bl
0 = —I°< = 3.67
ik Nc + BO + ﬂl ()
N,
7, = M;s (3.68)
0

where ap = > ac.

If we have approximated the posterior by a single point, p(8|D) ~ 6,(8), where 6 may be
the ML or MAP estimate, then the posterior predictive density is obtained by simply plugging in
the parameters, to yield a virtually identical rule:

D
ply=clx.D) o d [[(6e)" =D (1 = b;0)" =0 (3.69)
j=1

3.5.3

3.5.4

86 Chapter 3. Generative models for discrete data

The only difference is we replaced the posterior mean @ with the posterior mode or MLE 6.
However, this small difference can be important in practice, since the posterior mean will result
in less overfitting (see Section 3.4.4.1).

The log-sum-exp trick

We now discuss one important practical detail that arises when using generative classifiers of any
kind. We can compute the posterior over class labels using Equation 2.13, using the appropriate
class-conditional density (and a plug-in approximation). Unfortunately a naive implementation
of Equation 2.13 can fail due to numerical underflow. The problem is that p(x|y = ¢) is often
a very small number, especially if x is a high-dimensional vector. This is because we require
that > p(x|y) = 1, so the probability of observing any particular high-dimensional vector is
small. The obvious solution is to take logs when applying Bayes rule, as follows:

c
logp(y =¢|x) = b.—log lz e C’] (3.70)
c/'=1
be = logp(x|ly =c)+logp(y = c) 3.7

However, this requires evaluating the following expression
log[z e’ = logZp(y =, x) = log p(x) 3.72)
c’ c’

and we can't add up in the log domain. Fortunately, we can factor out the largest term, and just
represent the remaining numbers relative to that. For example,

log(e " + e 71?1 =log (e '*°(e” + 1)) =log(e” + e ") — 120 (3.73)

In general, we have

logZeb“ = log [(Z eb”B)eB] = [log(z el B)

where B = max, b.. This is called the log-sum-exp trick, and is widely used. (See the function
logsumexp for an implementation.)

This trick is used in Algorithm 1 which gives pseudo-code for using an NBC to compute
p(yilx;,0). See naiveBayesPredict for the Matlab code. Note that we do not need the
log-sum-exp trick if we only want to compute ¥;, since we can just maximize the unnormalized

quantity log p(y; = ¢) + log p(x;|y = ¢).

+ B (3.74)

Feature selection using mutual information

Since an NBC is fitting a joint distribution over potentially many features, it can suffer from
overfitting. In addition, the run-time cost is O(D), which may be too high for some applications.

One common approach to tackling both of these problems is to perform feature selection, to
remove “irrelevant” features that do not help much with the classification problem. The simplest
approach to feature selection is to evaluate the relevance of each feature separately, and then

3.5.5

3.5. Naive Bayes classifiers 87

Algorithm 3.2: Predicting with a naive bayes classifier for binary features

1fori=1:N do

2 forc=1:C do

3 L;. = logmg;

4 for j=1:D do

5 L if z;; = 1 then L,. := L;. + log éjc else L;. := L;. + log(1 — éjc)
6 Pic = exp(L;c — logsumexp(L; .));

take the top K, where K is chosen based on some tradeoff between accuracy and complexity.
This approach is known as variable ranking, filtering, or screening.
One way to measure relevance is to use mutual information (Section 2.8.3) between feature

X and the class label Y

p(x;)p(y)

The mutual information can be thought of as the reduction in entropy on the label distribution
once we observe the value of feature j. If the features are binary, it is easy to show (Exercise 3.21)
that the MI can be computed as follows

I(X,Y)=>" plaj,y)log 225) (3.75)
Zj Y

o 1-6,.
I = Z |:9jc7Tc log Oie + (1 —0j.)mclog Ojec (3.76)

where 7. = p(y = ¢), 0jc = p(x; = 1|y =¢), and 0; = p(z; = 1) = Y . 7cb0jc. (All of these
quantities can be computed as a by-product of fitting a naive Bayes classifier.)

Figure 3.1 illustrates what happens if we apply this to the binary bag of words dataset used in
Figure 3.8. We see that the words with highest mutual information are much more discriminative
than the words which are most probable. For example, the most probable word in both classes
is “subject”, which always occurs because this is newsgroup data, which always has a subject
line. But obviously this is not very discriminative. The words with highest MI with the class
label are (in decreasing order) “windows”, “microsoft”, “DOS” and “motif”, which makes sense,
since the classes correspond to Microsoft Windows and X Windows.

Classifying documents using bag of words

Document classification is the problem of classifying text documents into different categories.
One simple approach is to represent each document as a binary vector, which records whether
each word is present or not, so x;; = 1 iff word j occurs in document i, otherwise x;; = 0.
We can then use the following class conditional density:

D D
p(xilyi = ¢,0) = [Ber(zyl0;e) = [6,57 (1 — 0,0)1 0= 3.77)
j=1 j=1

88 Chapter 3. Generative models for discrete data

class1 prob | class2 prob || highest MI ~ MI

subject 0.998 | subject 0.998 || windows 0.215
this 0.628 | windows 0.639 || microsoft 0.095
with 0.535 this 0.540 dos 0.092
but 0.471 with 0.538 motif 0.078
you 0.431 but 0.518 window 0.067

Table 3.1 We list the 5 most likely words for class 1 (X windows) and class 2 (MS windows). We also show
the 5 words with highest mutual information with class label. Produced by naiveBayesBowDemo

This is called the Bernoulli product model, or the binary independence model.

However, ignoring the number of times each word occurs in a document loses some in-
formation (McCallum and Nigam 1998). A more accurate representation counts the number
of occurrences of each word. Specifically, let x; be a vector of counts for document i, so
x;; €{0,1,...,N;}, where N; is the number of terms in document i (so ijzl x;; = N;). For
the class conditional densities, we can use a multinomial distribution:

R
p(xi|y; = ¢,0) = Mu(x;|N;, 0,) = # H 0;0” (3.78)
j=1Tij* j=1
where we have implicitly assumed that the document length V; is independent of the class.
Here 6. is the probability of generating word j in documents of class ¢; these parameters satisfy
the constraint that ZD:1 0;c. = 1 for each class ¢.?

Although the multinomial classifier is easy to train and easy to use at test time, it does not
work particularly well for document classification. One reason for this is that it does not take
into account the burstiness of word usage. This refers to the phenomenon that most words
never appear in any given document, but if they do appear once, they are likely to appear more
than once, i.e., words occur in bursts.

The multinomial model cannot capture the burstiness phenomenon. To see why, note that
Equation 3.78 has the form Hjl\i”, and since 0. < 1 for rare words, it becomes increasingly
unlikely to generate many of them. For more frequent words, the decay rate is not as fast. To
see why intuitively, note that the most frequent words are function words which are not specific
to the class, such as “and”, “the”, and “but”; the chance of the word “and” occuring is pretty
much the same no matter how many time it has previously occurred (modulo document length),
so the independence assumption is more reasonable for common words. However, since rare
words are the ones that matter most for classification purposes, these are the ones we want to
model the most carefully.

Various ad hoc heuristics have been proposed to improve the performance of the multinomial
document classifier (Rennie et al. 2003). We now present an alternative class conditional density
that performs as well as these ad hoc methods, yet is probabilistically sound (Madsen et al.
2005).

3. Since Equation 3.78 models each word independently, this model is often called a naive Bayes classifier, although
technically the features x;; are not independent, because of the constraint) j Tij = N;.

3.5. Naive Bayes classifiers 89

Suppose we simply replace the multinomial class conditional density with the Dirichlet
Compound Multinomial or DCM density, defined as follows:
N, i! B (Xi + ac)

HjDzl (EZ]' B(a(')

(3.79)

pxilyi =c,0) = /Mu(inNi,9c)Dir(9c|ac)d9c =

(This equation is derived in Equation 5.24.) Surprisingly this simple change is all that is needed
to capture the burstiness phenomenon. The intuitive reason for this is as follows: After seeing
one occurence of a word, say word j, the posterior counts on 6; gets updated, making another
occurence of word j more likely. By contrast, if 6, is fixed, then the occurences of each word are
independent. The multinomial model corresponds to drawing a ball from an urn with K colors
of ball, recording its color, and then replacing it. By contrast, the DCM model corresponds to
drawing a ball, recording its color, and then replacing it with one additional copy; this is called
the Polya urn.

Using the DCM as the class conditional density gives much better results than using the
multinomial, and has performance comparable to state of the art methods, as described in
(Madsen et al. 2005). The only disadvantage is that fitting the DCM model is more complex; see
(Minka 2000e; Elkan 2006) for the details.

Exercises

Exercise 3.1 MLE for the Bernoulli/ binomial model

Derive Equation 3.22 by optimizing the log of the likelihood in Equation 3.1L

Exercise 3.2 Marginal likelihood for the Beta-Bernoulli model

In Equation 5.23, we showed that the marginal likelihood is the ratio of the normalizing constants:

p(D) = Z(a1 + N1, ap + No) _ I'(a1 + N1)'(ao + No) T'(a + ao) (3.80)
Z (a1, o) P(ar + a0+ N) T'(a1)l'(ao) '

We will now derive an alternative derivation of this fact. By the chain rule of probability,
p(z1:n) = p(z1)p(@2|21)p(2s]T1:2) . .. 3.8)
In Section 3.3.4, we showed that the posterior predictive distribution is

Ne+ar o Ne+ax
ZiNi—i—ai N+«

p(X = k|Dy.n) = (3.82)

where k € {0,1} and D1.y is the data seen so far. Now suppose D = H,T,T,H,H or D = 1,0,0,1, 1.
Then

at ag ao+1 a1 +1 a1 +2
D) = “. : . : 3.83
(D) a a+l a+2 a+3 a+4 (3.83)

_Joa(on 4+ 1) (a1 + 2)] [ao(ao + 1)]
- ala+1)-- (a+4) (3.84)

_ [(en)---(an + N1 = D] [(a0) --- (a0 + No — 1)]
a (@) (a+N-1) (385

Show how this reduces to Equation 3.80 by using the fact that, for integers, (v — 1)! = I'(«).

90 Chapter 3. Generative models for discrete data

Exercise 3.3 Posterior predictive for Beta-Binomial model

Recall from Equation 3.32 that the posterior predictive for the Beta-Binomial is given by

p(z|n, D) = Bb(z|ag,al,n) (3.86)
_ Blataoin—z+oap) (”) (3.87)
B(alv a()) T
Prove that this reduces to
!
~ (%]
=1D)= —— 3.88
p(& = 1|D) ot ol (3.88)

when n =1 (and hence z € {0, 1}). i.e, show that

!
[&51

Bb(1|ah, ap,1) = —A— 3.89
(|Oé1,O(O,) OC/1+066 ()

Hint: use the fact that
F(Ozo + a1 + 1) = (Ozo + a1 + 1)F(O[0 +4 a1) (3.90)

Exercise 3.4 Beta updating from censored likelihood

(Source: Gelman.) Suppose we toss a coin n = 5 times. Let X be the number of heads. We observe that
there are fewer than 3 heads, but we don’t know exactly how many. Let the prior probability of heads be
p(0) = Beta(d]1,1). Compute the posterior p(#|X < 3) up to normalization constants, i.e., derive an
expression proportional to p(6, X < 3). Hint: the answer is a mixture distribution.

Exercise 3.5 Uninformative prior for log-odds ratio
Let

¢ = logit(0) = log 3.9)

1-0
Show that if p(¢) o 1, then p(#) o Beta(6]0,0). Hint: use the change of variables formula.

Exercise 3.6 MLE for the Poisson distribution

The Poisson pmf is defined as Poi(z|\) = ef)‘%, for z € {0,1,2,...} where A\ > 0 is the rate

parameter. Derive the MLE.

Exercise 3.7 Bayesian analysis of the Poisson distribution

In Exercise 3.6, we defined the Poisson distribution with rate A\ and derived its MLE. Here we perform a

conjugate Bayesian analysis.

a. Derive the posterior p(A\|D) assuming a conjugate prior p(A) = Ga(\|a,b) o< A 'e™**. Hint: the
posterior is also a Gamma distribution.

b. What does the posterior mean tend to as @ — 0 and b — 0? (Recall that the mean of a Ga(a,b)
distribution is a/b.)

Exercise 3.8 MLE for the uniform distribution

(Source: Kaelbling.) Consider a uniform distribution centered on 0 with width 2a. The density function is
given by

p(z) = 5-I(z € [-a,a]) (3.92)

3.5. Naive Bayes classifiers 91

a. Given a data set x1, ..., T,, what is the maximum likelihood estimate of a (call it a)?
b. What probability would the model assign to a new data point 41 using a?

c. Do you see any problem with the above approach? Briefly suggest (in words) a better approach.

Exercise 3.9 Bayesian analysis of the uniform distribution

Consider the uniform distribution Unif(0, #). The maximum likelihood estimate is § = max(D), as we
saw in Exercise 3.8, but this is unsuitable for predicting future data since it puts zero probability mass
outside the training data. In this exercise, we will perform a Bayesian analysis of the uniform distribution
(following (Minka 2001a)). The conjugate prior is the Pareto distribution, p(6) = Pareto(6|b, K), defined in

Section 2.4.6. Given a Pareto prior, the joint distribution of 8 and D = (z1,...,zn) is
Kb*

Let m = max(D). The evidence (the probability that all N samples came from the same uniform
distribution) is

p(D) = /m el (3.94)

{K ifm<b

Kb (3.95)

(N+K)bN

Derive the posterior p(6|D), and show that if can be expressed as a Pareto distribution.

Exercise 3.10 Taxicab (tramcar) problem

Suppose you arrive in a new city and see a taxi numbered 100. How many taxis are there in this city? Let
us assume taxis are numbered sequentially as integers starting from 0, up to some unknown upper bound
0. (We number taxis from 0 for simplicity; we can also count from 1 without changing the analysis.) Hence
the likelihood function is p(x) = U(0, #), the uniform distribution. The goal is to estimate 6. We will use
the Bayesian analysis from Exercise 3.9.

a. Suppose we see one taxi numbered 100, so D = {100}, m = 100, N = 1. Using an (improper)
non-informative prior on 6 of the form p(6) = Pa(0|0,0) o 1/6, what is the posterior p(6|D)?

b. Compute the posterior mean, mode and median number of taxis in the city, if such quantities exist.

c. Rather than trying to compute a point estimate of the number of taxis, we can compute the predictive
density over the next taxicab number using

p(D'|D,) = / p(D'|0)p(0] D,)df = p(D'|3) (3.96)

where o = (b, K) are the hyper-parameters, 5 = (¢, N + K) are the updated hyper-parameters. Now
consider the case D = {m}, and D’ = {x}. Using Equation 3.95, write down an expression for

p(z|D, a) (3.97)
As above, use a non-informative prior b = K = 0.

d. Use the predictive density formula to compute the probability that the next taxi you will see (say,
the next day) has number 100, 50 or 150, i.e., compute p(z = 100|D, «), p(z = 50|D, «), p(x =
150D,).

e. Briefly describe (1-2 sentences) some ways we might make the model more accurate at prediction.

92 Chapter 3. Generative models for discrete data

Exercise 3.11 Bayesian analysis of the exponential distribution

A lifetime X of a machine is modeled by an exponential distribution with unknown parameter 6. The
likelihood is p(z|8) = Be =% for = >0, 6 > 0.
a. Show that the MLE is 6 = 1/, where T = = Zfil 2.

b. Suppose we observe X1 = 5, X5 = 6, X3 = 4 (the lifetimes (in years) of 3 different iid machines).
What is the MLE given this data?

c. Assume that an expert believes 6 should have a prior distribution that is also exponential
p(0) = Expon(0|A) (3.98)

Choose the prior parameter, call it A, such that E[0] = 1/3. Hint: recall that the Gamma distribution
has the form

Ga(fla,b) o 0" te (3.99)
and its mean is a/b.
d. What is the posterior, p(6|D, \)?
e. Is the exponential prior conjugate to the exponential likelihood?
f. What is the posterior mean, E [0|D, 5\}7
g. Explain why the MLE and posterior mean differ. Which is more reasonable in this example?

Exercise 3.12 MAP estimation for the Bernoulli with non-conjugate priors

(Source: Jaakkola.) In the book, we discussed Bayesian inference of a Bernoulli rate parameter with the

prior p(f) = Beta(f|«, 8). We know that, with this prior, the MAP estimate is given by
Ni+a—1

N+a+p-2

where N7 is the number of heads, Ny is the number of tails, and N = Ny + N7 is the total number of
trials.

g — (3.100)

a. Now consider the following prior, that believes the coin is fair, or is slightly biased towards tails:

0.5 if6=0.5
p(6) = 05 if6=04 (3.101)
0 otherwise

Derive the MAP estimate under this prior as a function of Ny and N.

b. Suppose the true parameter is § = 0.41. Which prior leads to a better estimate when N is small?
Which prior leads to a better estimate when N is large?

Exercise 3.13 Posterior predictive distribution for a batch of data with the dirichlet-multinomial model

In Equation 3.51, we gave the the posterior predictive distribution for a single multinomial trial using a
dirichlet prior. Now consider predicting a batch of new data, D = (X1, ..., X,,), consisting of m single
multinomial trials (think of predicting the next m words in a sentence, assuming they are drawn iid).

Derive an expression for

p(D|D,) (3.102)

3.5. Naive Bayes classifiers 93

Your answer should be a function of «, and the old and new counts (sufficient statistics), defined as

N]Sld _ Z I(l‘i — k) (3.103)
1€D

Npew = Y I(wi=k) (3104)
i€D

Hint: recall that, for a vector of counts, Ni.x, the marginal likelihood (evidence) is given by

p(D]e) = F(]F\,(i)a) 1;[FUII’E;;"“) (3.105)

where « =), ar and N =3, Np.

Exercise 3.14 Posterior predictive for Dirichlet-multinomial

(Source: Koller.).

a. Suppose we compute the empirical distribution over letters of the Roman alphabet plus the space
character (a distribution over 27 values) from 2000 samples. Suppose we see the letter “e” 260 times.
What is p(z2001 = €|D), if we assume 6 ~ Dir(ax, ..., asr), where ay = 10 for all k?

“w. “,n

b. Suppose, in the 2000 samples, we saw “e” 260 times, “a” 100 times, and “p” 87 times. What is
p(z2001 = p, z2002 = a|D), if we assume 6 ~ Dir(ay,. .., az7), where o = 10 for all £? Show
your work.

Exercise 3.15 Setting the beta hyper-parameters

Suppose 0 ~ B(a1,az) and we believe that E [#] = m and var [0] = v. Using Equation 2.62, solve for
a1 and «s in terms of m and v. What values do you get if m = 0.7 and v = 0.2%2

Exercise 3.16 Setting the beta hyper-parameters 1T

(Source: Draper.) Suppose 6 ~ (a1, a2) and we believe that E[] = m and p(¢ < 0 < u) = 0.95.
Write a program that can solve for ai; and a2 in terms of m, ¢ and u. Hint: write 2 as a function of a;
and m, so the pdf only has one unknown; then write down the probability mass contained in the interval
as an integral, and minimize its squared discrepancy from 0.95. What values do you get if m = 0.15,
£ =0.05 and u = 0.3? What is the equivalent sample size of this prior?

Exercise 3.17 Marginal likelihood for beta-binomial under uniform prior

Suppose we toss a coin N times and observe N1 heads. Let N1 ~ Bin(N, #) and 6 ~ Beta(1,1). Show
that the marginal likelihood is p(N1|N) = 1/(N + 1). Hint: I'(x 4+ 1) = ! if z is an integer.

Exercise 3.18 Bayes factor for coin tossing

Suppose we toss a coin N = 10 times and observe N1 = 9 heads. Let the null hypothesis be that the
coin is fair, and the alternative be that the coin can have any bias, so p(f) = Unif(0,1). Derive the
Bayes factor BF1 o in favor of the biased coin hypothesis. What if N = 100 and N; = 90? Hint: see
Exercise 3.17.

Exercise 3.19 Irrelevant features with naive Bayes

(Source: Jaakkola.) Let x;, = 1 if word w occurs in document 7 and x;,, = O otherwise. Let 6., be the
estimated probability that word w occurs in documents of class c. Then the log-likelihood that document

94 Chapter 3. Generative models for discrete data

x belongs to class c is

logp(xile,0) = log H OFi (1 — Byy) '~ i (3106)
= Z Tiw 108 Ocw 4+ (1 — Tiw) log(1 — Oew) (3107)

w=1

w
= Z Tiw lOg 1 —o + Z 10g(1 — Oew) (3.108)

where W is the number of words in the vocabulary. We can write this more succintly as

logp(xilc,0) = ¢(x:)" B, (3.109)
where x; = (%41, ..., z;w) is a bit vector, ¢p(x;) = (x3, 1), and
_ acl
B. = (log T—6." L. 9 - zw:log (3.110)

We see that this is a linear classifier, since the class-conditional density is a linear function (an inner
product) of the parameters 3..

a. Assuming p(C' = 1) = p(C = 2) = 0.5, write down an expression for the log posterior odds ratio,
log, 75222;}:;, in terms of the features ¢(x;) and the parameters 3, and 3,.

b. Intuitively, words that occur in both classes are not very “discriminative”, and therefore should not
affect our beliefs about the class label. Consider a particular word w. State the conditions on 61, and
02, (or equivalently the conditions on (1., £2,,) under which the presence or absence of w in a
test document will have no effect on the class posterior (such a word will be ignored by the classifier).
Hint: using your previous result, figure out when the posterior odds ratio is 0.5/0.5.

c. The posterior mean estimate of 6, using a Beta(l,]) prior, is given by

1+ Ziea Tiw
2+ ne

where the sum is over the n. documents in class ¢. Consider a particular word w, and suppose it
always occurs in every document (regardless of class). Let there be n1 documents of class 1 and n2 be
the number of documents in class 2, where n1 # ns (since e.g., we get much more non-spam than
spam; this is an example of class imbalance). If we use the above estimate for 6..,, will word w be
ignored by our classifier? Explain why or why not.

Do = (3.111)

d. What other ways can you think of which encourage “irrelevant” words to be ignored?

Exercise 3.20 Class conditional densities for binary data

Consider a generative classifier for C' classes with class conditional density p(x|y) and uniform class prior
p(y). Suppose all the D features are binary, z; € {0,1}. If we assume all the features are conditionally
independent (the naive Bayes assumption), we can write

p(x|y = ¢) H Ber(z,0;.) (3.112)

This requires DC' parameters.

3.5. Naive Bayes classifiers 95

a. Now consider a different model, which we will call the “full” model, in which all the features are fully
dependent (i.e., we make no factorization assumptions). How might we represent p(x|y = ¢) in this
case? How many parameters are needed to represent p(x|y = ¢)?

b. Assume the number of features D is fixed. Let there be N training cases. If the sample size N is very
small, which model (naive Bayes or full) is likely to give lower test set error, and why?

c. If the sample size N is very large, which model (naive Bayes or full) is likely to give lower test set error,
and why?

d. What is the computational complexity of fitting the full and naive Bayes models as a function of N
and D? Use big-Oh notation. (Fitting the model here means computing the MLE or MAP parameter
estimates. You may assume you can convert a D-bit vector to an array index in O(D) time.)

e. What is the computational complexity of applying the full and naive Bayes models at test time to a
single test case?

f. Suppose the test case has missing data. Let x,, be the visible features of size v, and x;, be the hidden
(missing) features of size h, where v + h = D. What is the computational complexity of computing

p(y|xv, 0) for the full and naive Bayes models, as a function of v and h?

Exercise 3.21 Mutual information for naive Bayes classifiers with binary features

Derive Equation 3.76.

Exercise 3.22 Fitting a naive bayes spam filter by hand

(Source: Daphne Koller.). Consider a Naive Bayes model (multivariate Bernoulli version) for spam classifica-

tion with the vocabulary V="secret", "offer", "low", "price", "valued", "customer", "today", "dollar", "million",
"sports", "is", "for", "play", "healthy", "pizza". We have the following example spam messages "million dollar

offer", "secret offer today", "secret is secret" and normal messages, "low price for valued customer", "play
secret sports today", "sports is healthy", "low price pizza". Give the MLEs for the following parameters:

Gspam, Qsecret|spam’ Gsecret|n0n—spam’ sports|n0n—spam’ 0d011ar|spam'

4.1

4.1.1

4.1.2

Gaussian models

Introduction

In this chapter, we discuss the multivariate Gaussian or multivariate normal (MVN), which
is the most widely used joint probability density function for continuous variables. It will form
the basis for many of the models we will encounter in later chapters.

Unfortunately, the level of mathematics in this chapter is higher than in many other chapters.
In particular, we rely heavily on linear algebra and matrix calculus. This is the price one must
pay in order to deal with high-dimensional data. Beginners may choose to skip sections marked
with a * In addition, since there are so many equations in this chapter, we have put a box
around those that are particularly important.

Notation

Let us briefly say a few words about notation. We denote vectors by boldface lower case letters,
such as x. We denote matrices by boldface upper case letters, such as X. We denote entries in
a matrix by non-bold upper case letters, such as X;;.

All vectors are assumed to be column vectors unless noted otherwise. We use [z1,...,zp] to
denote a column vector created by stacking D scalars. Similarly, if we write x = [x1,...,xp],
where the left hand side is a tall column vector, we mean to stack the x; along the rows; this is
usually written as x = (x7,...,x5)7, but that is rather ugly. If we write X = [x1,...,xp)],

where the left hand side is a matrix, we mean to stack the x; along the columns, creating a
matrix.

Basics

Recall from Section 2.5.2 that the pdf for an MVN in D dimensions is defined by the following:

exp —l(x —w)'E"x—p) 4D

N(xlu,) £ >

1
(2m)D/2||1/2

98 Chapter 4. Gaussian models

)\1 2

12
}\2

Figure 4.1 Visualization of a 2 dimensional Gaussian density. The major and minor axes of the ellipse
are defined by the first two eigenvectors of the covariance matrix, namely u; and us. Based on Figure 2.7
of (Bishop 2006a).

The expression inside the exponent is the Mahalanobis distance between a data vector x
and the mean vector p, We can gain a better understanding of this quantity by performing an
eigendecomposition of 3. That is, we write 3 = UAUT, where U is an orthonormal matrix
of eigenvectors satsifying U7 U =1, and A is a diagonal matrix of eigenvalues.

Using the eigendecomposition, we have that

D
1
Tl =UufATUT =AU =) ;uiu? 4.2)

where u; is the ¢'th column of U, containing the i'th eigenvector. Hence we can rewrite the
Mahalanobis distance as follows:

(x—p)' =7 (x—p)

(Z —u;u) (x —) 4.3)
= 1 ul - Y
= ZT i(x—u)zg)\— 4.4)

i=1

=N

<.

where ; £ ul’(x —). Recall that the equation for an ellipse in 2d is

yi o vs

N + N 1 (4.5)
Hence we see that the contours of equal probability density of a Gaussian lie along ellipses.
This is illustrated in Figure 4.1. The eigenvectors determine the orientation of the ellipse, and
the eigenvalues determine how elogonated it is.

In general, we see that the Mahalanobis distance corresponds to Euclidean distance in a
transformed coordinate system, where we shift by p and rotate by U.

4.1.3

4.1.3.1

4.1 Introduction 99

MLE for an MVN

We now describe one way to estimate the parameters of an MVN, using MLE. In later sections,
we will discuss Bayesian inference for the parameters, which can mitigate overfitting, and can
provide a measure of confidence in our estimates.

Theorem 4.1.1 (MLE for a Gaussian). If we have N iid samples x; ~ N (p,X), then the MLE for
the parameters is given by

1 N

~ A —

Bmie = N ;Xz =X (4.6)
1 1

S = m(xi —-X)(x; — %) = ﬁ(; xx!) —xxT 4.7

That is, the MLE is just the empirical mean and empirical covariance. In the univariate case, we
get the following familiar results:

o _
= Y=g 48)
L o R P B Co @9)
N 27 N 2"
Proof *

To prove this result, we will need several results from matrix algebra, which we summarize
below. In the equations, a and b are vectors, and A and B are matrices. Also, the notation
tr(A) refers to the trace of a matrix, which is the sum of its diagonals: tr(A) =", A;;.

d(bTa)
da
d(a’Aa) T
9 QT (4.10)
0 AT & (A-I\T
o log|A|= AT £ (A7)
tr(ABC) = tr(CAB) = tr(BCA)

The last equation is called the cyclic permutation property of the trace operator. Using this,
we can derive the widely used trace trick, which reorders the scalar inner product x*' Ax as
follows

xTAx = tr(x" Ax) = tr(xx’ A) = tr(Axx") 4.11)

100 Chapter 4. Gaussian models

Proof. We can now begin with the proof. The log-likelihood is
N

N 1
U(n,3) =logp(Dlp, D) = loglA[= > (xi—) Alxi — p)

i=1
where A = 37! is the precision matrix.

Using the substitution y; = x; — p and the chain rule of calculus, we have

O i— TS i —p) = —yTsly, 2

@ 87yiyi Yi EW
= 1=+ =y
Hence
9 1N N
— (0, X)) = —= 2 N x, —p) =271 X; — W) =
5y %) 3 2025 e) = BT -
p = L3 x-x
= e Xi = X
N i=1

So the MLE of p is just the empirical mean.

Now we can use the trace-trick to rewrite the log-likelihood for A as follows:

(A) = S loglAl— 33 wrltx — s —) A

N 1

where

N
S = Z(Xz‘ —p)(xi —)"

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
4.19)

(4.20)

is the scatter matrix centered on . Taking derivatives of this expression with respect to A

yields
MA) N, o lop
K S S
_ _ 1
AT = Alzzzﬁsu
SO

R
= N ;(Xi —p)(xi —p)"

(4.2

(4.22)

(4.23)

which is just the empirical covariance matrix centered on p. If we plug-in the MLE p = X
(since both parameters must be simultaneously optimized), we get the standard equation for the

MLE of a covariance matrix.

O

4.14

4.2

4.2. Gaussian discriminant analysis 101

Maximum entropy derivation of the Gaussian *

In this section, we show that the multivariate Gaussian is the distribution with maximum entropy
subject to having a specified mean and covariance (see also Section 9.2.6). This is one reason the
Gaussian is so widely used: the first two moments are usually all that we can reliably estimate
from data, so we want a distribution that captures these properties, but otherwise makes as few
addtional assumptions as possible.

To simplify notation, we will assume the mean is zero. The pdf has the form

1 1
p(x) =~ exp(*§XT2’1X) 4.24)

If we define f;;(x) = x;z; and \;; = 2(571);, for i,5 € {1,..., D}, we see that this is in

the same form as Equation 9.74. The (differential) entropy of this distribution (using log base ¢)
is given by

h(N(u, X)) = %m [(2me)”|%]] (4.25)

We now show the MVN has maximum entropy amongst all distributions with a specified co-
variance 3.

Theorem 4.1.2. Let q(x) be any density satisfying [q(x)z;x; = $;;. Let p = N(0,X). Then
h(q) < h(p).

Proof. (From (Cover and Thomas 1991, p234).) We have

0 < KL(qllp) = / q(x) log ZE’;; dx (4.26)

= —h(q) — /q(x) log p(x)dx 4.27)

=* —h(q) f/p(x) log p(x)dx (4.28)

— —hlg)+h(p) 429)

where the key step in Equation 4.28 (marked with a *) follows since ¢ and p yield the same
moments for the quadratic form encoded by log p(x). O

Gaussian discriminant analysis

One important application of MVNs is to define the the class conditional densities in a generative
classifier, i.e.,

p(xly = ¢, 0) = N(x|p,, X.) (4.30)

The resulting technique is called (Gaussian) discriminant analysis or GDA (even though it is a
generative, not discriminative, classifier — see Section 8.6 for more on this distinction). If 3. is
diagonal, this is equivalent to naive Bayes.

4.2.1

102 Chapter 4. Gaussian models

red = female, blue=male red = female, blue=male
X X

x
weight
8

Figure 4.2 (a) Height/weight data. (b) Visualization of 2d Gaussians fit to each class. 95% of the probability
mass is inside the ellipse. Figure generated by gaussHeightWeight.

We can classify a feature vector using the following decision rule, derived from Equation 2.13:

7(x) = argmax [log p(y = c|7) + log p(x]6.)] (4.31)

When we compute the probability of x under each class conditional density, we are measuring
the distance from x to the center of each class, pt., using Mahalanobis distance. This can be
thought of as a nearest centroids classifier.

As an example, Figure 4.2 shows two Gaussian class-conditional densities in 2d, representing
the height and weight of men and women. We can see that the features are correlated, as is
to be expected (tall people tend to weigh more). The ellipses for each class contain 95% of the
probability mass. If we have a uniform prior over classes, we can classify a new test vector as
follows:

§(x) = argmin(x — p,)" St (x — ps,.) 432)

Quadratic discriminant analysis (QDA)

The posterior over class labels is given by Equation 2.13. We can gain further insight into this
model by plugging in the definition of the Gaussian density, as follows:

7|27 "2 exp [~ (x — p)T (x — p,
ply = clx,0) = 272 - [2<1 o) - (_1)] (4.33)
S T 20| T exp [~ 3 (x — p)TEL (x —)]

Thresholding this results in a quadratic function of x. The result is known as quadratic
discriminant analysis (QDA). Figure 4.3 gives some examples of what the decision boundaries
look like in 2D.

4.2. Gaussian discriminant analysis 103

Parabolic Boundary Some Linear, Some Quadratic
— T T T

() (b)

Figure 4.3 Quadratic decision boundaries in 2D for the 2 and 3 class case. Figure generated by
discrimAnalysisDboundariesDemo.

T=100 T=1 T=0.1 T=0.01
0.4 1 1 1
0.3
0.2 0.5 0.5 0.5
0.1
0 0 0 0
1 2 3 1 2 3 1 2 3 1 2 3

Figure 4.4 Softmax distribution S(n/T), where 7 = (3,0, 1), at different temperatures 7. When the
temperature is high (left), the distribution is uniform, whereas when the temperature is low (right), the
distribution is “spiky”, with all its mass on the largest element. Figure generated by softmaxDemo2.

4.2.2 Linear discriminant analysis (LDA)

We now consider a special case in which the covariance matrices are tied or shared across
classes, . = 3. In this case, we can simplify Equation 4.33 as follows:

1 1
p(y =c|x,0) o mw.exp [NCTE_lx — §XTE_1X — Q,UCTZ_luc] (4.34)
1 1
= exp [HZE_lx - iufE_luc + logwc} exp[—ixTE_lx] (4.35)

Since the quadratic term x” X~ 'x is independent of ¢, it will cancel out in the numerator and
denominator. If we define

1
Yo = —iufE_luc—i—logﬂc (4.36)
B, = = ', (4.37)

4.2.3

104 Chapter 4. Gaussian models

then we can write

eﬁfX%—%
where 1 = [BlTx + Y1y ,,ng + 7¢], and S is the softmax function, defined as follows:
elle
SMe= =" (4.39)

ZC’ZI efle!

The softmax function is so-called since it acts a bit like the max function. To see this, let us
divide each 7). by a constant 7" called the temperature. Then as 7" — 0, we find

_ [1.0 if ¢ = argmax, ne
Sm/T). = { 0.0 otherwise

In other words, at low temperatures, the distribution spends essentially all of its time in the
most probable state, whereas at high temperatures, it visits all states uniformly. See Figure 4.4
for an illustration. Note that this terminology comes from the area of statistical physics, where
it is common to use the Boltzmann distribution, which has the same form as the softmax
function.

An interesting property of Equation 4.38 is that, if we take logs, we end up with a linear
function of x. (The reason it is linear is because the x7 3 'x cancels from the numerator
and denominator.) Thus the decision boundary between any two classes, say ¢ and ¢/, will be
a straight line. Hence this technique is called linear discriminant analysis or LDA. ! We can
derive the form of this line as follows:

(4.40)

ply=cx,0) = ply=_<]x,0) (4.41)
Brx+7. = PBox—+7e 4.42)
x"(Bs —B) = Yo —e (4.43)

See Figure 4.5 for some examples.

An alternative to fitting an LDA model and then deriving the class posterior is to directly
fit p(y|x, W) = Cat(y|Wx) for some C' x D weight matrix W. This is called multi-class
logistic regression, or multinomial logistic regression.? We will discuss this model in detail
in Section 8.2. The difference between the two approaches is explained in Section 8.6.

Two-class LDA

To gain further insight into the meaning of these equations, let us consider the binary case. In
this case, the posterior is given by

BT x+m
ply=1x.0) = ePTx+71 | B85 x+70 (4.44)
1 .
oA = Sem (B = Bo) " x + (1 = 70)) - @45)

1. The abbreviation “LDA”, could either stand for “linear discriminant analysis” or “latent Dirichlet allocation” (Sec-

tion 27.3). We hope the meaning is clear from text.
2. In the language modeling community, this model is called a maximum entropy model, for reasons explained in
Section 9.2.6.

4.2. Gaussian discriminant analysis 105

Linear Boundary All Linear Boundaries
T T T

Figure 4.5 Linear decision boundaries in 2D for the 2 and 3 class case. Figure generated by
discrimAnalysisDboundariesDemo.

Figure 4.6 Geometry of LDA in the 2 class case where 3; = 3y = 1.

where sigm(7) refers to the sigmoid function (Equation 1.10).

Now
M=% _%Mfﬁ_lul + %MoTz_luo + log(m1 /mo) (4.46)
= (s)" S (i + o)+ log(m1 /o) 447
So if we define
w = B —-By= =y - Fo) (4.48)
xo = 2+ o) — (1 — o) st /o) 449)

2 (g — 120) TS (g —)

4.2.4

4.2.5

106 Chapter 4. Gaussian models

then we have w’xy = —(v; — 7o), and hence

p(y=1x,0) = sigm(w’(x—xq)) (4.50)

(This is closely related to logistic regression, which we will discuss in Section 8.2.) So the final
decision rule is as follows: shift x by xg, project onto the line w, and see if the result is positive
or negative.

If ¥ = 021, then w is in the direction of p1; — 1. So we classify the point based on whether
its projection is closer to p, or p. This is illustrated in Figure 4.6. Furthemore, if 71 = 7, then
Xo = %(ul + g), which is half way between the means. If we make m; > 7, then x(gets
closer to p, so more of the line belongs to class 1 a priori. Conversely if m; < 7, the boundary
shifts right. Thus we see that the class prior, 7., just changes the decision threshold, and not
the overall geometry, as we claimed above. (A similar argument applies in the multi-class case.)

The magnitude of w determines the steepness of the logistic function, and depends on
how well-separated the means are, relative to the variance. In psychology and signal detection
theory, it is common to define the discriminability of a signal from the background noise using
a quantity called d-prime:

d 2 H1 — Ho
g

(4.5

where ji; is the mean of the signal and po is the mean of the noise, and o is the standard
deviation of the noise. If d’ is large, the signal will be easier to discriminate from the noise.

MLE for discriminant analysis

We now discuss how to fit a discriminant analysis model. The simplest way is to use maximum
likelihood. The log-likelihood function is as follows:

logp(D|O) = ZZH y; = c)log T, +Z Z log NV (x|p,, 2¢) (4.52)

i=1 c=1 iyi=c

We see that this factorizes into a term for 7r, and C' terms for each p,. and .. Hence we
can estimate these parameters separately. For the class prior, we have 7. = %, as with naive
Bayes. For the class-conditional densities, we just partition the data based on its class label, and
compute the MLE for each Gaussian:

. 1 .
o= D X — Z — i7" (4.53)
1:Yi=cC 1Y =c

See discrimAnalysisFit for a Matlab implementation. Once the model has been fit, you can
make predictions using discrimAnalysisPredict, which uses a plug-in approximation.

Strategies for preventing overfitting

The speed and simplicity of the MLE method is one of its greatest appeals. However, the MLE
can badly overfit in high dimensions. In particular, the MLE for a full covariance matrix is
singular if N. < D. And even when N, > D, the MLE can be ill-conditioned, meaning it is
close to singular. There are several possible solutions to this problem:

4.2.6

4.2. Gaussian discriminant analysis 107

* Use a diagonal covariance matrix for each class, which assumes the features are conditionally
independent; this is equivalent to using a naive Bayes classifier (Section 3.5).

e Use a full covariance matrix, but force it to be the same for all classes, 3, = 3. This is an
example of parameter tying or parameter sharing, and is equivalent to LDA (Section 4.2.2).

* Use a diagonal covariance matrix and forced it to be shared. This is called diagonal covariance
LDA, and is discussed in Section 4.2.7.

e Use a full covariance matrix, but impose a prior and then integrate it out. If we use a
conjugate prior, this can be done in closed form, using the results from Section 4.6.3; this
is analogous to the “Bayesian naive Bayes” method in Section 3.5.1.2. See (Minka 2000f) for
details.

e Fit a full or diagonal covariance matrix by MAP estimation. We discuss two different kinds
of prior below.

e Project the data into a low dimensional subspace and fit the Gaussians there. See Sec-
tion 8.6.3.3 for a way to find the best (most discriminative) linear projection.

We discuss some of these options below.

Regularized LDA *

Suppose we tie the covariance matrices, so ¥, = X, as in LDA, and furthermore we perform
MAP estimation of X using an inverse Wishart prior of the form TW(diag(X,.;.),v0) (see
Section 4.5.1). Then we have

> = Mdiag(Zmie) + (1 = A)Simie (4.54)

where A controls the amount of regularization, which is related to the strength of the prior, 1
(see Section 4.6.2.1 for details). This technique is known as regularized discriminant analysis
or RDA (Hastie et al. 2009, p656).

-1

A —1 ~

When we evaluate the class conditional densities, we need to compute > , and hence X%, ,;.,
which is impossible to compute if D > N. However, we can use the SVD of X (Section 12.2.3)
to get around this, as we show below. (Note that this trick cannot be applied to QDA, which is
a nonlinear function of x.)

Let X = UDVY be the SVD of the design matrix, where V is D x N, U is an N x N
orthogonal matrix, and D is a diagonal matrix of size N. Furthermore, define the N x N
matrix Z = UD; this is like a design matrix in a lower dimensional space (since we assume
N < D). Also, define p, = VTu as the mean of the data in this reduced space; we can recover
the original mean using i = V., since VTV = VVT = 1. With these definitions, we can

4.2.7

108 Chapter 4. Gaussian models

rewrite the MLE as follows:

- 1
Soe = XX - pp” 455
vle N j274 ()

1
= @@V - (Vi) (Vi) (.56

1
= NVZTZVT —Vp_purv? (4.57)

1
= V(NZTZ —p puhHyv7T (4.58)
= vy.v7’ (4.59)
where 3. is the empirical covariance of Z. Hence we can rewrite the MAP estimate as

Sap = VE VT (4.60)
B, = Miag(2) 4+ (1- M2, (4.61)

Note, however, that we never need to actually compute the D x D matrix f]map. This is because
Equation 4.38 tells us that to classify using LDA, all we need to compute is p(y = ¢|x,0) x
exp(d.), where

o1 1
Se=—X'B. 4% B.=3% M Ye— 5;1,3[30 + log 7. (4.62)
We can compute the crucial 8, term for RDA without inverting the D x D matrix as follows:

/6 - 2ma;oy’c - (ViZVT)ilu‘c = VgglvTuc = Vi:;lll’z,c (463)

where 1, . = V7 is the mean of the Z matrix for data belonging to class c. See rdaFit for
the code.

Diagonal LDA

A simple alternative to RDA is to tie the covariance matrices, so . = 3 as in LDA, and then to
use a diagonal covariance matrix for each class. This is called the diagonal LDA model, and is
equivalent to RDA with A = 1. The corresponding discriminant function is as follows (compare
to Equation 4.33):

D
de(x) =logp(x,y = cl@) = Z MCJ + log . (4.64)

j=1

Typically we set fic; = Z.; and ¢ aj = 52, which is the pooled empirical variance of feature j

(pooled across classes) defined by
52 o ZSZI Zlylzc(zlﬂ - Ecj)Q
g N-C

In high dimensional settings, this model can work much better than LDA and RDA (Bickel and
Levina 2004).

]’

(4.65)

4.2.8

4.2. Gaussian discriminant analysis 109

Number of Genes

21308 13§5 35‘32 1(?6 3‘6 1‘2 ? 0
—O— Test
09 =3 Train @
osf ~ER-cov m

0.7r

0.6

Misclassification Error
o
o

Figure 4.7 Error versus amount of shrinkage for nearest shrunken centroid classifier applied to the
SRBCT gene expression data. Based on Figure 18.4 of (Hastie et al. 2009). Figure generated by
shrunkenCentroidsSRBCTdemo.

Nearest shrunken centroids classifier *

One drawback of diagonal LDA is that it depends on all of the features. In high dimensional
problems, we might prefer a method that only depends on a subset of the features, for reasons
of accuracy and interpretability. One approach is to use a screening method, perhaps based
on mutual information, as in Section 3.5.4. We now discuss another approach to this problem
known as the nearest shrunken centroids classifier (Hastie et al. 2009, p652).

The basic idea is to perform MAP estimation for diagonal LDA with a sparsity-promoting
(Laplace) prior (see Section 13.3). More precisely, define the class-specific feature mean, /i, in
terms of the class-independent feature mean, m, and a class-specific offset, A.;. Thus we have

ﬂcj = m]- + ch (466)

We will then put a prior on the A.; terms to encourage them to be strictly zero and compute
a MAP estimate. If, for feature j, we find that A.; = 0 for all ¢, then feature j will play no role
in the classification decision (since ji.; will be independent of ¢). Thus features that are not
discriminative are automatically ignored. The details can be found in (Hastie et al. 2009, p652)
and (Greenshtein and Park 2009). See shrunkenCentroidsFit for some code.

Let us give an example of the method in action, based on (Hastie et al. 2009, p652). Consider
the problem of classifying a gene expression dataset, which 2308 genes, 4 classes, 63 training
samples and 20 test samples. Using a diagonal LDA classifier produces 5 errors on the test set.
Using the nearest shrunken centroids classifier produced 0 errors on the test set, for a range of
A values: see Figure 4.7. More importantly, the model is sparse and hence more interpretable:
Figure 4.8 plots an unpenalized estimate of the difference, d.;, in gray, as well as the shrunken
estimates A.; in blue. (These estimates are computed using the value of A estimated by CV.)
We see that only 39 genes are used, out of the original 2308.

Now consider an even harder problem, with 16,603 genes, a training set of 144 patients, a
test set of 54 patients, and 14 different types of cancer (Ramaswamy et al. 2001). Hastie et al.
(Hastie et al. 2009, p656) report that nearest shrunken centroids produced 17 errors on the test

4.3

110 Chapter 4. Gaussian models

Class 1 Class 2

il I 'I""’I|' ’
2k

_4t

_2F

6}

-6

. . . .))
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

(a) (b)
Class 3 Class 4
6 8r
4 6
I | |
Sl o (Sl adivy I |
-4 -2
760 560 1 0‘00 1 560 2600 25‘00 740 560 1 0‘00 1 560 20‘00 25‘00
(© (d
Figure 4.8 Profile of the shrunken centroids corresponding to A = 4.4 (CV optimal in Fig-

ure 4.7). This selects 39 genes. Based on Figure 18.4 of (Hastie et al. 2009). Figure generated by
shrunkenCentroidsSRBCTdemo.

set, using 6,520 genes, and that RDA (Section 4.2.6) produced 12 errors on the test set, using
all 16,603 genes. The PMTK function cancerHighDimClassifDemo can be used to reproduce
these numbers.

Inference in jointly Gaussian distributions

Given a joint distribution, p(x1,Xz2), it is useful to be able to compute marginals p(x;) and
conditionals p(x1|x2). We discuss how to do this below, and then give some applications. These
operations take O(D?) time in the worst case. See Section 20.4.3 for faster methods.

4.3.1

4.3.2

4.3.2.1

4.3. Inference in jointly Gaussian distributions m

Statement of the result

Theorem 4.3.1 (Marginals and conditionals of an MVN). Suppose x = (x1,X2) is jointly Gaussian
with parameters

_ (M) w_(Zu Z312) A_s-l_ <A11 A12) AG7
12 (IJ’2>) <E21 222) A21 A22 (.)
Then the marginals are given by

p(x1) = N(xilp, E11)

p(x2) = N(x2[py, ¥) (4.68)

and the posterior conditional is given by

p(xifx2) = N(X1|H1\27 i)
Myp = My + 21222721 (x2 — pg)
= py — A Aga(xa — o) (4.69)
= 32 (A11py — Aga(x2 — p1y))
Y2 =311 — Z31222_21221 = A1_11

Equation 4.69 is of such crucial importance in this book that we have put a box around it, so
you can easily find it. For the proof, see Section 4.3.4.

We see that both the marginal and conditional distributions are themselves Gaussian. For the
marginals, we just extract the rows and columns corresponding to x; or x5. For the conditional,
we have to do a bit more work. However, it is not that complicated: the conditional mean is
just a linear function of x5, and the conditional covariance is just a constant matrix that is
independent of x5. We give three different (but equivalent) expressions for the posterior mean,
and two different (but equivalent) expressions for the posterior covariance; each one is useful in
different circumstances.

Examples

Below we give some examples of these equations in action, which will make them seem more
intuitive.

Marginals and conditionals of a 2d Gaussian

Let us consider a 2d example. The covariance matrix is

2
> = (o1 p01§2> (4.70)

pPoO102 g5

The marginal p(z;) is a 1D Gaussian, obtained by projecting the joint distribution onto the 2
line:

p(x1) = N(z1lp,07) @.70)

4.3.2.2

112 Chapter 4. Gaussian models

(a) (b) (©

Figure 4.9 (a) A joint Gaussian distribution p(x1,z2) with a correlation coefficient of 0.8. We plot the
95% contour and the principal axes. (b) The unconditional marginal p(x1). (c) The conditional p(z1|z2) =
N (21]0.8,0.36), obtained by slicing (a) at height 22 = 1. Figure generated by gaussCondition2Ddemo?2.

Suppose we observe X5 = xo; the conditional p(z1|z2) is obtained by “slicing” the joint
distribution through the X5 = x5 line (see Figure 4.9):

010 010 2
parler) = A (i + 2252 e = o), o2 - L0220 u)
g2 02
If 09 = 09 = 0, we get
p(zilea) = N (z1|p + p(ze — p2), o°(1—p?)) 4.73)

In Figure 4.9 we show an example where p = 0.8, 01 = 09 =1, u = 0 and 25 = 1. We
see that [E [x1 |z = 1] = 0.8, which makes sense, since p = 0.8 means that we believe that if
x4 increases by 1 (beyond its mean), then x; increases by 0.8. We also see var [x1]zy = 1] =
1 —0.8%2 = 0.36. This also makes sense: our uncertainty about x; has gone down, since we
have learned something about x; (indirectly) by observing z5. If p = 0, we get p(x1|zs) =
N (w1| 11, o%), since o conveys no information about x; if they are uncorrelated (and hence
independent).

Interpolating noise-free data

Suppose we want to estimate a 1d function, defined on the interval [0, T, such that y; = f(¢;)
for N observed points ¢;. We assume for now that the data is noise-free, so we want to
interpolate it, that is, fit a function that goes exactly through the data. (See Section 4.4.2.3 for
the noisy data case.) The question is: how does the function behave in between the observed
data points? It is often reasonable to assume that the unknown function is smooth. In Chapter 15,
we shall see how to encode priors over functions, and how to update such a prior with observed
values to get a posterior over functions. But in this section, we take a simpler approach, which
is adequate for MAP estimation of functions defined on 1d inputs. We follow the presentation
of (Calvetti and Somersalo 2007, p135).

We start by discretizing the problem. First we divide the support of the function into D equal
subintervals. We then define

z; = f(s;), sj=jh, h= 1<j<D (4.74)

T
D’

4.3. Inference in jointly Gaussian distributions 113

2=30 A=0p1

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

(@)

Figure 4.10 Interpolating noise-free data using a Gaussian with prior precision A. (@ A = 30. (b)
A = 0.01. See also Figure 4.15. Based on Figure 7.1 of (Calvetti and Somersalo 2007). Figure generated by
gaussInterpDemo.

We can encode our smoothness prior by assuming that z; is an average of its neighbors, z;_;
and x;41, plus some Gaussian noise:

1 ‘
vj = 5@ @)+, 2<j<D -2 “.75)

where € ~ A (0, (1/X)I). The precision term A controls how much we think the function will
vary: a large A corresponds to a belief that the function is very smooth, a small A corresponds
to a belief that the function is quite “wiggly”. In vector form, the above equation can be written
as follows:

Lx=¢€ (4.76)
where L is the (D — 2) x D second order finite difference matrix
-1 2 -1
1 -1 2 -1
L= 4.77
5 4.77)
-1 2 -1

The corresponding prior has the form
2
p(x) = N(x]0, \’LTL)™!) o exp (—)\2|Lx|g) (4.78)

We will henceforth assume we have scaled L by A\ so we can ignore the A term, and just write
A = LTL for the precision matrix.

Note that although x is D-dimensional, the precision matrix A only has rank D — 2. Thus
this is an improper prior, known as an intrinsic Gaussian random field (see Section 19.4.4 for

4.3.2.3

114 Chapter 4. Gaussian models

more information). However, providing we observe N > 2 data points, the posterior will be
proper.

Now let x5 be the N noise-free observations of the function, and x; be the D — N unknown
function values. Without loss of generality, assume that the unknown variables are ordered first,
then the known variables. Then we can partition the L. matrix as follows:

L = [Ly, Ly], L; e RP=2xD=N) "1, ¢ RIO=2xN) 4.79)

We can also partition the precision matrix of the joint distribution:

A A LTL, LTL
T 11 12 141 142
A == L L = < A 01 A 22) = (L%"Ll L%'*L2> (480)

Using Equation 4.69, we can write the conditional distribution as follows:

p(xilx2) = N(py)2, B1)2) (4.81)
B = —A5Aaxy = —LiLyxo (4.82)
S1p = AL 4.83)

Note that we can compute the mean by solving the following system of linear equations:
L1/J,1|2 = 7L2X2 (484)

This is efficient since L; is tridiagonal. Figure 4.10 gives an illustration of these equations. We
see that the posterior mean 1), equals the observed data at the specified points, and smoothly
interpolates in between, as desired.

It is also interesting to plot the 95% pointwise marginal credibility intervals, ;; &
2,/%12,j;, shown in grey. We see that the variance goes up as we move away from the
data. We also see that the variance goes up as we decrease the precision of the prior, A. In-
terestingly, A has no effect on the posterior mean, since it cancels out when multiplying A1
and Aj5. By contrast, when we consider noisy data in Section 4.4.2.3, we will see that the prior
precision affects the smoothness of posterior mean estimate.

The marginal credibility intervals do not capture the fact that neighboring locations are
correlated. We can represent that by drawing complete functions (i.e., vectors x) from the
posterior, and plotting them. These are shown by the thin lines in Figure 4.10. These are not
quite as smooth as the posterior mean itself. This is because the prior only penalizes first-order
differences. See Section 4.4.2.3 for further discussion of this point.

Data imputation

Suppose we are missing some entries in a design matrix. If the columns are correlated, we can
use the observed entries to predict the missing entries. Figure 4.11 shows a simple example. We
sampled some data from a 20 dimensional Gaussian, and then deliberately “hid” 50% of the data
in each row. We then inferred the missing entries given the observed entries, using the true
(generating) model. More precisely, for each row ¢, we compute p(xp,|Xy,,0), where h; and v;
are the indices of the hidden and visible entries in case i. From this, we compute the marginal
distribution of each missing variable, p(x,; [xv,, @). We then plot the mean of this distribution,
Z;; = E[z;|xy,, 0]; this represents our “best guess” about the true value of that entry, in the

4.3.3

4.3. Inference in jointly Gaussian distributions 115

observed imputed truth
10 10 10

o171 obo 1112 &

) i ieg _Sééi ng%éi _S%L Qgﬂgo

-10 — -10 ‘ ‘ 10 ‘ :
o 5 10 15 20 0 5 10 15 20 0 5 10 15 20

[¢)]

Figure 4.11 Illustration of data imputation. Left column: visualization of three rows of the data matrix
with missing entries. Middle column: mean of the posterior predictive, based on partially observed
data in that row, but the true model parameters. Right column: true values. Figure generated by
gaussImputationDemo.

sense that it minimizes our expected squared error (see Section 5.7 for details). Figure 4.11 shows
that the estimates are quite close to the truth. (Of course, if j € v;, the expected value is equal
to the observed value, Z;; = x;;.)

We can use var |2y, |Xv,, 0| as a measure of confidence in this guess, although this is not
shown. Alternatively, we could draw multiple samples from p(xp,|Xv,, 8); this is called multiple
imputation.

In addition to imputing the missing entries, we may be interested in computing the like-
lihood of each partially observed row in the table, p(xy,|@), which can be computed using
Equation 4.68. This is useful for detecting outliers (atypical observations).

Information form

Suppose x ~ N (p, X). One can show that E [x] = p is the mean vector, and cov [x] = X is
the covariance matrix. These are called the moment parameters of the distribution. However,
it is sometimes useful to use the canonical parameters or natural parameters, defined as

AL a2ty (4.85)
We can convert back to the moment parameters using

p=A"1¢ T=A"" (4.86)
Using the canonical parameters, we can write the MVN in information form (i.e., in exponential
family form, defined in Section 9.2):

Nox|E,A) = (2m) PP2|A% exp _%(XTAX%TA—% —oxTg) (487

where we use the notation N,() to distinguish from the moment parameterization N ().
It is also possible to derive the marginalization and conditioning formulas in information
form. We find

p(x2) = No(x2|€y — Aot AT €, Aoy — Aoy AT Ayo) (4.88)
p(xi|x2) = Ne(x1]€; — Araxa, A1) (4.89)

4.3.4

4.3.4.1

116 Chapter 4. Gaussian models

Thus we see that marginalization is easier in moment form, and conditioning is easier in
information form.

Another operation that is significantly easier in information form is multiplying two Gaussians.
One can show that

Nc(gfa)‘f)J\/c(ggv)‘g) = J\/c(gf &g Ar +)‘g) (4.90)
However, in moment form, things are much messier:
2 2 2 2
2 2 Hiog + HeTF T50
= 4.91
N (g, 08N (g, 03) N< P (4.91)

Proof of the result *

We now prove Theorem 4.3.1. Readers who are intimidated by heavy matrix algebra can safely
skip this section. We first derive some results that we will need here and elsewhere in the book.
We will return to the proof at the end.

Inverse of a partitioned matrix using Schur complements

The key tool we need is a way to invert a partitioned matrix. This can be done using the
following result.

Theorem 4.3.2 (Inverse of a partitioned matrix). Consider a general partitioned matrix

E F
M = (G H) (4.92)
where we assume E and H are invertible. We have
Mfl _ (M/H)_l _(M/H)_lFH_l (4 93)
o -H'GM/H)"! H!'+H !G(M/H) 'FH! ’
_ E'+E'F(M/E)"!GE~! —-E"'F(M/E)~! (4.94)
B —(M/E)"'GE™! (M/E)~! ’
where
M/H £ E-FH 'G (4.95)
M/E & H-GE'F (4.96)

We say that M /H is the Schur complement of M wrt H. Equation 4.93 is called the partitioned
inverse formula.

Proof. 1f we could block diagonalize M, it would be easier to invert. To zero out the top right
block of M we can pre-multiply as follows

I -FH-'\ (E F E_-FH'G 0
(0 I)(G H) :< G H) @97

4.3.4.2

4.3. Inference in jointly Gaussian distributions n7

Similarly, to zero out the bottom left we can post-multiply as follows

E-FH'G 0 I 0\ (E-FH'G 0 4.98)
G H/\-H'G 1) 0 H '
Putting it all together we get
I -FH '\ (E F I 0\ (E-FH!G 0 4.99)
0 I G H)\-H'G 1) — 0 H '
—_——
X M zZ W

Taking the inverse of both sides yields

Z7'M Xt = w! (4.100)
and hence
M = ZW X 4.101)
Substituting in the definitions we get
E F\ ' I 0\ ((M/H)"! 0 \ /I -FH! w102)
G H o ~-H'G 1 0 H! 0 I ’
. (M/H)! 0 I -FH!
= (HlG(M/H)1 H')lo 1 (4103)
() ~(M/H)~'FH! 100
- \-H!'¢M/H)! H!'+H !G(M/H) 'FH! '

Alternatively, we could have decomposed the matrix M in terms of E and M/E = (H —
GE~'F), yielding

(E F)_l _ <E1+E1F(M/E)1GE1 ElF(M/E)1>

G H —(M/E)"!GE~! (M/E)~! (4.105)

O

The matrix inversion lemma

We now derive some useful corollaries of the above result.

Corollary 4.3.1 (Matrix inversion lemma). Consider a general partitioned matrix M = (g I]E‘I)'

where we assume E and H are invertible. We have
(E-FH 'G)! = E'+E'F(H-GE 'F)"'GE™! (4.106)
(E-FH 'G)"'FH' = E'FH-GE'F)! (4.107)
IE-FH 'G| = |H-GE 'F|H|E]| (4.108)

4.3.4.3

118 Chapter 4. Gaussian models

The first two equations are s known as the matrix inversion lemma or the Sherman-
Morrison-Woodbury formula. The third equation is known as the matrix determinant
lemma. A typical application in machine learning/ statistics is the following. Let E = X
be a N x N diagonal matrix, let F = G7 = X of size N x D, where N > D, and let
H~! = —I Then we have

(E+XXDH) =g -2 XI+ X2 1X)"IXTx! (4.109)

The LHS takes O(N?) time to compute, the RHS takes time O(D?) to compute.
Another application concerns computing a rank one update of an inverse matrix. Let

H = —1 (a scalar), F = u (a column vector), and G = v (a row vector). Then we have
(E+uv’)™ = E'+E'u(-1-v'Elu) 'vIE™! (4.110)
E-l'uvTE"!
= B l-— — — 4111
1+ vIE-1lu (4.111)

This is useful when we incrementally add a data vector to a design matrix, and want to update
our sufficient statistics. (One can derive an analogous formula for removing a data vector.)

Proof. To prove Equation 4.106, we simply equate the top left block of Equation 4.93 and Equa-
tion 4.94. To prove Equation 4.107, we simple equate the top right blocks of Equations 4.93 and
4.94. The proof of Equation 4.108 is left as an exercise. O

Proof of Gaussian conditioning formulas

We can now return to our original goal, which is to derive Equation 4.69. Let us factor the joint
p(x1,X2) as p(x2)p(x1|x2) as follows:

T -1
1 /x; —py DIITEED D X1 — My
E = ——= 4.112
P { 2 (Xz = My o1 X Xg — Mo 1)

Using Equation 4.102 the above exponent becomes

T

1 (x; — My I 0 (2/222)71 0
E = —— _ _ 4.113
o { 2 (X2 = My 35 1 0 2 -

-1 o
W (T —PeXn) (i —m (4.114)
0 I Xo — o
1 _ _

= eXxp {—2()(1 — K — 2122221 (X2 - [,LQ))T(E/ZQQ) L (4.115)

_ 1 _
(x1 = 1y — T12555 (x2 — Nz))} X exp {—2(X2 — p12) " By (%2 — Hz)} (4.116)
This is of the form

exp(quadratic form in x,X2) X exp(quadratic form in x) (417

4.4

4.4.1

4.4. Linear Gaussian systems 19

Hence we have successfully factorized the joint as
p(x1,%2) = p(xa[x2)p(x2) (4.118)
= N(xalpy2, Z1p2)N (x2| e, o2) (4.119)

where the parameters of the conditional distribution can be read off from the above equations
using

Pajs = py+ D125 (x0 — py) (4.120)
i = X/Zeo =311 — PP D N (4.121)

We can also use the fact that |[M| = |M/H||H]| to check the normalization constants are
correct:

(2m) @ RBE = (2m) (|2 gy [Sa)? @122)
(2m) /2|8 /Ba |7 (27)%2/2|Ds |2 (4.123)

where d; = dim(x;) and d» = dim(x32).
We leave the proof of the other forms of the result in Equation 4.69 as an exercise.

Linear Gaussian systems

Suppose we have two variables, x and y. Let x € R”+ be a hidden variable, and y € RPv be
a noisy observation of x. Let us assume we have the following prior and likelihood:

p(x) = N(x|p,, 2)

(4.124)
p(y|x) = N(y|Ax +b,X,)

where A is a matrix of size D, x D,. This is an example of a linear Gaussian system. We
can represent this schematically as x — y, meaning x generates y. In this section, we show
how to “invert the arrow”, that is, how to infer x from y. We state the result below, then give
several examples, and finally we derive the result. We will see many more applications of these
results in later chapters.

Statement of the result

Theorem 4.4.1 (Bayes rule for linear Gaussian systems). Given a linear Gaussian system, as in
Equation 4.124, the posterior p(x|y) is given by the following:

S =3"+ATS A (4.125)

zly

Py = Say[ATS) T (y —b) + 3, ',]

4.4.2

4.4.2.1

120 Chapter 4. Gaussian models

In addition, the normalization constant p(y) is given by

p(y) =N(y|Ap, +b, 3, + AX,AT) (4.126)

For the proof, see Section 4.4.3.

Examples

In this section, we give some example applications of the above result.

Inferring an unknown scalar from noisy measurements

Suppose we make N noisy measurements y; of some underlying quantity z; let us assume the
measurement noise has fixed precision A\, =1/ o2, so the likelihood is

plyilr) = N(yilz, A1) 4.127)
Now let us use a Gaussian prior for the value of the unknown source:
pl) = N(zlpo,Ag") (4.128)

We want to compute p(z|y1,...,yn,0?). We can convert this to a form that lets us apply
Bayes rule for Gaussians by defining y = (y1,...,yn), A = 1% (an 1 x N row vector of Is),
and E;l = diag(A,I). Then we get

p(zly) = N(zlpn, Ay 4.129)

AN = Mo+ N)\y (4.130)
Ny + Xopio N\, _ Ao

- 4131

py . PV Sy w e (413D

These equations are quite intuitive: the posterior precision Ay is the prior precision Ag plus N
units of measurement precision \,. Also, the posterior mean py is a convex combination of
the MLE 7 and the prior mean . This makes it clear that the posterior mean is a compromise
between the MLE and the prior. If the prior is weak relative to the signal strength (\q is
small relative to \,), we put more weight on the MLE. If the prior is strong relative to the
signal strength ()¢ is large relative to A,), we put more weight on the prior. This is illustrated
in Figure 4.12, which is very similar to the analogous results for the beta-binomial model in
Figure 3.6.

Note that the posterior mean is written in terms of NA,¥, so having N measurements each
of precision), is like having one measurement with value % and precision N\,

We can rewrite the results in terms of the posterior variance, rather than posterior precision,

4.4. Linear Gaussian systems 121

prior variance = 1.00 prior variance = 5.00
— DriOF
- ===k

0.6F 0.67| m s post

05 05

0.4r

0.3r

0.2r

0.1

-5

Figure 4.12 Inference about = given a noisy observation y = 3. (a) Strong prior A/(0, 1). The posterior
mean is “shrunk” towards the prior mean, which is 0. (a) Weak prior N'(0,5). The posterior mean is
similar to the MLE. Figure generated by gaussInferParamsMeanid.

as follows:

p(z|D,0?) = N(z|un,T%) (4.132)

1 o273

2 0
= = 4.133
™~ % T -,—% NTg) ()

0]
— 2 2
o (o Ny o Nty _

= — + —) = 4134
HN ™ (To2+ a2> NT(J2+O'QNO+NT()2+U2y @134

where 78 = 1/ is the prior variance and 7% = 1/)\y is the posterior variance.

We can also compute the posterior sequentially, by updating after each observation. If
N = 1, we can rewrite the posterior after seeing a single observation as follows (where we
define ¥, = 02, Xy = Tg and ¥; = 712 to be the variances of the likelihood, prior and
posterior):

p(aly) = N(z|w, 1) (4.135)
1 1\t e
o= (wte) = 4136
' <zo 2y> Yo + 5, (4.136)
Ho Y
= Ni|lw % 4137
M1 1 (Eo + Zy> ()
We can rewrite the posterior mean in 3 different ways:

o= =gty (4138)

! S, + %0 0 S, + X '
= po+(y—)i (4.139)

= Lo Y — Ho 2, + 2o .

Ey

= y—(y— o) (4.140)

Ey+20

4.4.2.2

122 Chapter 4. Gaussian models

The first equation is a convex combination of the prior and the data. The second equation is the
prior mean adjusted towards the data. The third equation is the data adjusted towards the prior
mean; this is called shrinkage. These are all equivalent ways of expressing the tradeoff between
likelihood and prior. If ¥ is small relative to Xy, corresponding to a strong prior, the amount
of shrinkage is large (see Figure 4.12(a)), whereas if ¥ is large relative to X, corresponding to
a weak prior, the amount of shrinkage is small (see Figure 4.12(b)).

Another way to quantify the amount of shrinkage is in terms of the signal-to-noise ratio,
which is defined as follows:

E [X?] _ o+ 444

SNR £
E [e?] 2y

(4.141)

where © ~ N (110, Xo) is the true signal, y = x + € is the observed signal, and € ~ N (0, %,)
is the noise term.

Inferring an unknown vector from noisy measurements

Now consider N vector-valued observations, y; ~ N(x,X,), and a Gaussian prior, x ~
N (g, Xo). Setting A = I, b = 0, and using y for the effective observation with precision
N 2; L we have

p(Xly1,...,yn) = NEpy, En) (4.142)
Y = I+ Nyt (4.143)
py = Ex(E,'(NY)+ 3) (4.144)

See Figure 4.13 for a 2d example. We can think of x as representing the true, but unknown,
location of an object in 2d space, such as a missile or airplane, and the y; as being noisy
observations, such as radar “blips”. As we receive more blips, we are better able to localize the
source. In Section 18.3.1, we will see how to extend this example to track moving objects using
the famous Kalman filter algorithm.

Now suppose we have multiple measuring devices, and we want to combine them together;
this is known as sensor fusion. If we have multiple observations with different covariances (cor-
responding to sensors with different reliabilities), the posterior will be an appropriate weighted
average of the data. Consider the example in Figure 4.14. We use an uninformative prior on x,
namely p(x) = N (pg, o) = N(0,10'°I;). We get 2 noisy observations, y1 ~ N (x,%, 1)
and y2 ~ N(x,X,). We then compute p(x|y1,y2).

In Figure 4.14(a), we set X, 1 = X, 9 = 0.01I, so both sensors are equally reliable. In this
case, the posterior mean is half way between the two observations, y; and ys. In Figure 4.14(b),
we set X, 1 = 0.05I5 and %, » = 0.01I5, so sensor 2 is more reliable than sensor 1. In this
case, the posterior mean is closer to ys. In Figure 4.14(c), we set

10 1 11
2%1_0.01(1 1), 3,2 =0.01 (1 10) (4.145)

so sensor 1 is more reliable in the yo component (vertical direction), and sensor 2 is more
reliable in the 1; component (horizontal direction). In this case, the posterior mean uses y;’s
vertical component and y5's horizontal component.

4.4.2.3

4.4. Linear Gaussian systems 123

data prior post after 10 obs
1 1 1
° 4
0.5) w 0.5 0.5
o
0 o 0 @ 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1

Figure 4.13 Illustration of Bayesian inference for the mean of a 2d Gaussian. (a) The data is generated
from y; ~ N (x,3,), where x = [0.5,0.5]” and 3, = 0.1[2,1;1,1]). We assume the sensor noise
covariance X, is known but x is unknown. The black cross represents x. (b) The prior is p(x) =

N (x]0,0.112). (c) We show the posterior after 10 data points have been observed. Figure generated by
gaussInferParamsMean2d.

02
0

02|

04

o]

(@ (b) (©

Figure 4.14 We observe y; = (0, —1) (red cross) and y2 = (1, 0) (green cross) and infer E(p|y1,y2,0)
(black cross). (a) Equally reliable sensors, so the posterior mean estimate is in between the two circles.
(b) Sensor 2 is more reliable, so the estimate shifts more towards the green circle. (c) Sensor 1 is more
reliable in the vertical direction, Sensor 2 is more reliable in the horizontal direction. The estimate is an
appropriate combination of the two measurements. Figure generated by sensorFusion2d.

Note that this technique crucially relies on modeling our uncertainty of each sensor; comput-
ing an unweighted average would give the wrong result. However, we have assumed the sensor
precisions are known. When they are not, we should model out uncertainty about 3; and 34
as well. See Section 4.6.4 for details.

Interpolating noisy data

We now revisit the example of Section 4.3.2.2. This time we no longer assume noise-free
observations. Instead, let us assume that we obtain N noisy observations y;; without loss
of generality, assume these correspond to x1,...,zy. We can model this setup as a linear

4.4.3

124 Chapter 4. Gaussian models

Gaussian system:

where € ~ N(0,%,), ¥, = 0L, 02 is the observation noise, and A is a N x D projection
matrix that selects out the observed elements. For example, if N =2 and D = 4 we have

10 0 0
A= (O 1 0 O) (4.147)

Using the same improper prior as before, 32, = (LTL)~!, we can easily compute the posterior
mean and variance. In Figure 4.15, we plot the posterior mean, posterior variance, and some
posterior samples. Now we see that the prior precision A effects the posterior mean as well as
the posterior variance. In particular, for a strong prior (large)), the estimate is very smooth, and
the uncertainty is low. but for a weak prior (small)), the estimate is wiggly, and the uncertainty
(away from the data) is high.

The posterior mean can also be computed by solving the following optimization problem:

1 P
. 2 2
min o — i=1($i —9)*+3 ; {(xj —zj-1) + (2 — Tj41) } (4.148)
where we have defined g = 1 and zpy1 = xp for notational simplicity. We recognize this
as a discrete approximation to the following problem:
1 2 A 1012
min o [0 - v+ 5 [10 (4149

where f’(t) is the first derivative of f. The first term measures fit to the data, and the second
term penalizes functions that are “too wiggly”. This is an example of Tikhonov regularization,
which is a popular approach to functional data analysis. See Chapter 15 for more sophisticated
approaches, which enforce higher order smoothness (so the resulting samples look less “jagged”).

Proof of the result *

We now derive Equation 4.125. The basic idea is to derive the joint distribution, p(x,y) =
p(x)p(y|x), and then to use the results from Section 4.3.1 for computing p(x|y).

In more detail, we proceed as follows. The log of the joint distribution is as follows (dropping
irrelevant constants):

1 _ 1 _

logp(X7 Y) = 7§(X - I‘I’I)TET I(X - H’f) - i(y —Ax — b)sz 1(y —Ax — b) (4.150)
This is clearly a joint Gaussian distribution, since it is the exponential of a quadratic form.

Expanding out the quadratic terms involving x and y, and ignoring linear and constant terms,
we have

1 1 1
Q = —§XTE;1X—EyTEljly—§(AX)TE;1(AX)+yTE;1Ax (4.151)
T -1 Ts—1 Ts—1
1 _
= -3 (;) (Zx jEAfliy A A2721y) (;) 4.152)
Y Y
T
1
- = (X> »! (X> (4.153)
2 \y y

4.5

4.5. Digression: The Wishart distribution * 125

2=30 A=0p1

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

(@)

Figure 4.15 Interpolating noisy data (noise variance o> = 1) using a Gaussian with prior precision \. (a)
A = 30. (b) A = 0.01. See also Figure 4.10. Based on Figure 7.1 of (Calvetti and Somersalo 2007). Figure
generated by gaussInterpNoisyDemo. See also splineBasisDemo.

where the precision matrix of the joint is defined as

1 T —1 _ ATy -1
solo (B FAEA CA B by (A Ay (4.154)
-3, 'A 3, Ay Ayy

From Equation 4.69, and using the fact that p, = A, + b, we have

pxly) = N(Bgpy: Zapy) (4.155)
oy AL =3+ ATE A (4.156)
Bopy = Say (Aaokty — Auy(y — 1)) 4157)

= 2 (S 'w+ATS(y - b)) (4.158)

Digression: The Wishart distribution *

The Wishart distribution is the generalization of the Gamma distribution to positive definite
matrices. Press (Press 2005, pl07) has said “The Wishart distribution ranks next to the (multi-
variate) normal distribution in order of importance and usefuleness in multivariate statistics”.
We will mostly use it to model our uncertainty in covariance matrices, 3, or their inverses,
A=%""1

The pdf of the Wishart is defined as follows:

1 1
Wi(A[S,v) = Z—W|A|<"—D—1>/2exp (—Qtr(AS_l)) (4.159)
1

Here v is called the “degrees of freedom” and S is the “scale matrix”. (We shall get more
intuition for these parameters shortly) The normalization constant for this distribution (which

4.5.1

126 Chapter 4. Gaussian models

requires integrating over all symmetric pd matrices) is the following formidable expression
Zwi = 2"PPTp(v/2)8|"? (4160)

where I'p(a) is the multivariate gamma function:

D
Ip(x) = PP DAT]C (@ + (1-14)/2) (4.161)

i=1

Hence I'1 (a) = I'(a) and

D vy+1—1
Ip(ro/2) = HF(OT) (4.162)

i=1

The normalization constant only exists (and hence the pdf is only well defined) if v > D — 1.
There is a connection between the Wishart distribution and the Gaussian. In particular,

let x; ~ N(0,X). Then the scatter matrix S = Zf\il x;x! has a Wishart distribution:

S ~ Wi(3,1). Hence E [S] = NX. More generally, one can show that the mean and mode of

Wi(S, v) are given by
mean = vS, mode = (v — D — 1)S (4.163)

where the mode only exists if v > D + 1.
If D = 1, the Wishart reduces to the Gamma distribution:
v s

Wi(As™!v) = Ga(/\\g, 5) (4.164)

Inverse Wishart distribution

Recall that we showed (Exercise 2.10) that if A ~ Ga(a,b), then that ~ IG(a,b). Similarly,
if 271 ~ Wi(S,v) then & ~ IW(S™',v + D + 1), where IW is the inverse Wishart, the
multidimensional generalization of the inverse Gamma. It is defined as follows, for v > D — 1

and S > 0:
1 1
WS, v) = — |2 WP 2exp (—Ztr(S7IZ7Y) (4.165)
Ziw 2

Zw = [S|7V/22vP2rp(v)2) (4.166)
One can show that the distribution has these properties

St St
_ de— 2> 4167
mean = T o1 M T U D (4167
If D = 1, this reduces to the inverse Gamma:

IW(c?S™t, v) =1G(0?|v/2,8/2) (4.168)

4.5.2

4.6

4.6. Inferring the parameters of an MVN 127

Wi(dof=3.0, S), E=[9.5, -0.1; 0.1, 1.9], p=-0.0 &

5)
2 5 0.06 06
0 o 0
0.04 04
-5
-5
-4 -2 0 2 4 -5 0 5 = 0z 02
5 = - 0

|
&

.
N
W01

Figure 4.16 Visualization of the Wishart distribution. Left: Some samples from the Wishart distribution,
3 ~ Wi(S, v), where S = [3.1653, —0.0262; —0.0262, 0.6477] and v = 3. Right: Plots of the marginals
(which are Gamma), and the approximate (sample-based) marginal on the correlation coefficient. If v = 3
there is a lot of uncertainty about the value of the correlation coefficient p (see the almost uniform
distribution on [—1,1]). The sampled matrices are highly variable, and some are nearly singular. As v
increases, the sampled matrices are more concentrated on the prior S. Figure generated by wiPlotDemo.

Visualizing the Wishart distribution *

Since the Wishart is a distribution over matrices, it is hard to plot as a density function. However,
we can easily sample from it, and in the 2d case, we can use the eigenvectors of the resulting
matrix to define an ellipse, as explained in Section 4.1.2. See Figure 4.16 for some examples.

For higher dimensional matrices, we can plot marginals of the distribution. The diagonals of
a Wishart distributed matrix have Gamma distributions, so are easy to plot. It is hard in general
to work out the distribution of the off-diagonal elements, but we can sample matrices from
the distribution, and then compute the distribution empirically. In particular, we can convert
each sampled matrix to a correlation matrix, and thus compute a Monte Carlo approximation
(Section 2.7) to the expected correlation coefficients:

S
1
E[Ry] ~ < > R(EY); (4.169)
s=1

where) ~ Wi(X,) and R(X) converts matrix X into a correlation matrix:
V ZiiXj

We can then use kernel density estimation (Section 14.7.2) to produce a smooth approximation
to the univariate density E [R;;] for plotting purposes. See Figure 4.16 for some examples.

Ry — (4.170)

Inferring the parameters of an MVN

So far, we have discussed inference in a Gaussian assuming the parameters 8 = (u, X)) are
known. We now discuss how to infer the parameters themselves. We will assume the data has

4.6.1

4.6.2

128 Chapter 4. Gaussian models

the form x; ~ N(p,X) for i = 1 : N and is fully observed, so we have no missing data (see
Section 11.6.1 for how to estimate parameters of an MVN in the presence of missing values). To
simplify the presentation, we derive the posterior in three parts: first we compute p(u|D, X);
then we compute p(3|D, u); finally we compute the joint p(u, X|D).

Posterior distribution of p

We have discussed how to compute the MLE for p; we now discuss how to compute its posterior,
which is useful for modeling our uncertainty about its value.
The likelihood has the form

1
p(D|p) = N(X|p, NE) @171)

For simplicity, we will use a conjugate prior, which in this case is a Gaussian. In particular, if
p(p) = N(p|mg, Vi) then we can derive a Gaussian posterior for g based on the results in
Section 4.4.2.2. We get

p(pu|D,X) = N(pmy,Vy) 4.172)
Vi o= VylenNzT! 4.173)
my = Vy(ZHNR)+ Vy'img) (4.174)

This is exactly the same process as inferring the location of an object based on noisy radar
“blips”, except now we are inferring the mean of a distribution based on noisy samples. (To a
Bayesian, there is no difference between uncertainty about parameters and uncertainty about
anything else.)

We can model an uninformative prior by setting Vo = ool In this case we have p(u|D, X) =
N (X, %E), so the posterior mean is equal to the MLE. We also see that the posterior variance
goes down as 1/N, which is a standard result from frequentist statistics.

Posterior distribution of X *

We now discuss how to compute p(3|D, u). The likelihood has the form
N 1
p(Dlp,X) o< |32 exp (—2tr(SH§J_1)) (4.175)

The corresponding conjugate prior is known as the inverse Wishart distribution (Section 4.5.1).
Recall that this has the following pdf:

1
IW(Z[S; L) o ||~ FetPHD/2 exp <—2tr(802_1)) (4.176)
Here vy > D — 1 is the degrees of freedom (dof), and Sy is a symmetric pd matrix. We see

that Sy’ ! plays the role of the prior scatter matrix, and Ny = vy + D + 1 controls the strength
of the prior, and hence plays a role analogous to the sample size N.

4.6.2.1

4.6. Inferring the parameters of an MVN 129

N=100, D=50 N=50, D=50 N=25, D=50

= true, k=10.00
====MLE, k= 71
= ==+ MAP, k=8.62

eigenvalue
eigenvalue
eigenvalue

0 5 10 15 20 25

Figure 4.17 Estimating a covariance matrix in D = 50 dimensions using N € {100, 50,25} samples.
We plot the eigenvalues in descending order for the true covariance matrix (solid black), the MLE (dotted
blue) and the MAP estimate (dashed red), using Equation 4.184 with A = 0.9. We also list the condition
number of each matrix in the legend. Based on Figure 1 of (Schaefer and Strimmer 2005). Figure generated
by shrinkcovDemo.

Multiplying the likelihood and prior we find that the posterior is also inverse Wishart:

1
p(ED,p) < |T|7F exp <_2tf(2_1su)> |55~ (ot D+1)/2

exp (;tr(2180)> 4.177)
v 1 1
— |3~ e (—2tr (=S, + SO)]) (4.178)
= IW(Z|Sy,vn) (4.179)
vy = w+N (4.180)
Sy’ = So+S, (4.181)

In words, this says that the posterior strength v is the prior strength vy plus the number of
observations N, and the posterior scatter matrix Sy is the prior scatter matrix Sy plus the data
scatter matrix S,,.

MAP estimation

We see from Equation 4.7 that Sne is a rank min(N, D) matrix. If N < D, this is not
full rank, and hence will be uninvertible. And even if N > D, it may be the case that X is
ill-conditioned (meaning it is nearly singular).

To solve these problems, we can use the posterior mode (or mean). One can show (using
techniques analogous to the derivation of the MLE) that the MAP estimate is given by

$ _ Sy . So+ S o

meeT 4+ D+1 Ny+ N

If we use an improper uniform prior, corresponding to Ny = 0 and Sy = 0, we recover the
MLE.

(4.182)

4.6.2.2

130 Chapter 4. Gaussian models

Let us now consider the use of a proper informative prior, which is necessary whenever D/N
is large (say bigger than 0.1). Let i = X, so S, = Sz. Then we can rewrite the MAP estimate
as a convex combination of the prior mode and the MLE. To see this, let 3y = %‘; be the prior

mode. Then the posterior mode can be rewritten as

3 So + Sx Ny So N S 3
S = - 20 T 2 A (1= N 4183
P No+N No+ NN, Ng+t NN 0+ (1 =N Zm (4163

where A = %, controls the amount of shrinkage towards the prior.

This begs the question: where do the parameters of the prior come from? It is common to
set A by cross validation. Alternatively, we can use the closed-form formula provided in (Ledoit
and Wolf 2004b,a; Schaefer and Strimmer 2005), which is the optimal frequentist estimate if we
use squared loss. This is arguably not the most natural loss function for covariance matrices
(because it ignores the postive definite constraint), but it results in a simple estimator, which
is implemented in the PMTK function shrinkcov. We discuss Bayesian ways of estimating A
later.

As for the prior covariance matrix, Sy, it is common to use the following (data dependent)

prior: Sp = diag(X,¢). In this case, the MAP estimate is given by

3 . X ie(i, 7) if i =j
Hmap(i]) = s 4.184
p(6:J) { (1 =XN)X,e(i,j) otherwise ()

Thus we see that the diagonal entries are equal to their ML estimates, and the off diago-
nal elements are “shrunk” somewhat towards 0. This technique is therefore called shrinkage
estimation, or regularized estimation.

The benefits of MAP estimation are illustrated in Figure 4.17. We consider fitting a 50 dimen-
sional Gaussian to N = 100, N = 50 and N = 25 data points. We see that the MAP estimate
is always well-conditioned, unlike the MLE. In particular, we see that the eigenvalue spectrum
of the MAP estimate is much closer to that of the true matrix than the MLE’s. The eigenvectors,
however, are unaffected.

The importance of regularizing the estimate of ¥ will become apparent in later chapters,
when we consider fitting covariance matrices to high dimensional data.

Univariate posterior

In the 1d case, the likelihood has the form

N
2 2\—N/2 1 2
p(Dlo?) x (02)"N?exp (-202 ?Zl(a;i —)) (4.185)

The standard conjugate prior is the inverse Gamma distribution, which is just the scalar version
of the inverse Wishart:

IG(0?|ag, bo) o (o)~ (@0+D) exp(f%) (4.186)

4.6. Inferring the parameters of an MVN 131

—— N2 " = IW(v=0.001, $=0.001), true ®=10.000
035(| wumaNos
= == N=50

Figure 4.18 Sequential updating of the posterior for o2 starting from an uninformative prior. The data
was generated from a Gaussian with known mean g = 5 and unknown variance o> = 10. Figure generated
by gaussSeqUpdateSigmalD.

Multiplying the likelihood and the prior, we see that the posterior is also IG:

p(0*|D) = 1G(o®|an,by) 4.187)
an = ao+ N/2 4.188)
1 N
_ 2
by = b0+§§(:ci— 1) (4.189)

See Figure 4.18 for an illustration.

The form of the posterior is not quite as pretty as the multivariate case, because of the
factors of 3. This arises because IW (02|so, 1) = IG(0?|52,). Another problem with using
the IG(ap, by) distribution is that the strength of the prior is encoded in both a¢ and by.
To avoid both of these problems, it is common (in the statistics literature) to use an alternative
parameterization of the IG distribution, known as the (scaled) inverse chi-squared distribution.
This is defined as follows:

2 2
14 121 121
Y 2(03|vy, 02) = IG(02|50, 02 0 x (¢%)0/2~ ! exp(— 20020) (4.190)

Here 1 controls the strength of the prior, and 03 encodes the value of the prior. With this
prior, the posterior becomes

p(@®|D,p) = x*(o®|vn,o%) 4.191)
vy = v+N (4.192)
2 N N2
o2 = H% 2 im (@i —p) 4193)
UN

We see that the posterior dof v is the prior dof vy plus N, and the posterior sum of squares
vno% is the prior sum of squares 1902 plus the data sum of squares.

We can emulate an uninformative prior, p(O’Q) o 072, by setting 1y = 0, which makes
intuitive sense (since it corresponds to a zero virtual sample size).

4.6.3

4.6.3.1

4.6.3.2

132 Chapter 4. Gaussian models

Posterior distribution of x and X *

We now discuss how to compute p(p, 3|D). These results are a bit complex, but will prove
useful later on in this book. Feel free to skip this section on a first reading.

Likelihood
The likelihood is given by

N
N 1
p(Dlp, =) = (2m) VPP2[Z["F exp (—2 ki =)= (xi - u)) (4.194)
i=1
Now one can show that
N
x-S xi—p) = w(EZ7SH) + NE-p) TR - p) (4.195)
i=1
Hence we can rewrite the likelihood as follows:
N N
p(D|pw,) = (2n) NP/2%|7% exp (—2(u . (T X)) (4.196)
exp (—];tr(z—lsz)) 4.197)

We will use this form below.

Prior

The obvious prior to use is the following
p(u,E) :N(M|m0,VQ)IW(E|So,V0) (4.198)

Unfortunately, this is not conjugate to the likelihood. To see why, note that g and ¥ appear
together in a non-factorized way in the likelihood; hence they will also be coupled together in
the posterior.

The above prior is sometimes called semi-conjugate or conditionally conjugate, since both
conditionals, p(p|3) and p(X|w), are individually conjugate. To create a full conjugate prior,
we need to use a prior where g and ¥ are dependent on each other. We will use a joint
distribution of the form

p(p, 3) = p(X)p(p|X) (4.199)

Looking at the form of the likelihood equation, Equation 4.197, we see that a natural conjugate

4.6. Inferring the parameters of an MVN 133

prior has the form of a Normal-inverse-wishart or NIW distribution, defined as follows:

NIW (p, £|my, ko, vo, So) = (4.200)
1
J\/'(u|m07 ?02) X IW(E|S(), Vo) (4.201)
— 1 -1 ko Ts—1
= Zvrw |X|"2 exp(3(# my)" 3 (pn mo)) 4.202)
v 1 1
x |3~ etpt exp (—2tr(2180)> (4.203)
1 .
= 7 Dol (4.204)
NIW
1
X exp (—F;O(u —mg)"E " (p —my) — 2tr(2‘1so)) (4.205)
Zntw = 2°9P2T (10 /2)(27 /ko)P/?|S0| 70 /? (4.206)

where I'p(a) is the multivariate Gamma function.

The parameters of the NIW can be interpreted as follows: my is our prior mean for u, and
ko is how strongly we believe this prior; and Sy is (proportional to) our prior mean for 3, and
1o is how strongly we believe this prior.®

One can show (Minka 2000f) that the (improper) uninformative prior has the form

lim N (|mo, B/k)IW ([S0, k) o 273|723~ (PHD)/2 (4.207)
—
x |2]7(Z+D o NIW(p, 2|0, 0,0, 0I) (4.208)

In practice, it is often better to use a weakly informative data-dependent prior. A common
choice (see e.g., (Chipman et al. 2001, p8l), (Fraley and Raftery 2007, p6)) is to use Sy =
diag(Sz)/N, and vy = D + 2, to ensure E [X] = Sy, and to set g, = X and k¢ to some small
number, such as 0.01.

3. Although this prior has four parameters, there are really only three free parameters, since our uncertainty in the
mean is proportional to the variance. In particular, if we believe that the variance is large, then our uncertainty in p
must be large too. This makes sense intuitively, since if the data has large spread, it may be hard to pin down its mean.
See also Exercise 9.1, where we will see the three free parameters more explicitly. If we want separate “control” over our
confidence in p and X, we must use a semi-conjugate prior.

4.6.3.3

4.6.3.4

4.6.3.5

134 Chapter 4. Gaussian models

Posterior

The posterior can be shown (Exercise 4.11) to be NIW with updated parameters:

p(p, 2|D) = NIW(p,X|mpy, sy, VN, SN) (4.209)
my = ’ioml‘i; Nx Ho'jf o+ @%i (4.210)
ky = Ko+ N 4.211)
vy = v+ N 4.212)
Sv = So+48s+ N % me)(x— mo)” (4.213)
ko + N
= So+S+ /i()m()mg — mNmNm% (4.214)

where we have defined S £ Zfil x;x1" as the uncentered sum-of-squares matrix (this is easier
to update incrementally than the centered version).

This result is actually quite intuitive: the posterior mean is a convex combination of the prior
mean and the MLE, with “strength” ko 4+ NV; and the posterior scatter matrix Sy is the prior
scatter matrix Sy plus the empirical scatter matrix Sz plus an extra term due to the uncertainty
in the mean (which creates its own virtual scatter matrix).

Posterior mode

The mode of the joint distribution has the following form:

S
argmaxp(p, X|D) = (my, V]\/—&-i%—i—?) (4.215)
If we set kg = 0, this reduces to
So + Sz
argmaxp(p, £|D) = (X s) (4.216)

"vo+N+D+2

The corresponding estimate 3 is almost the same as Equation 4183, but differs by 1 in the
denominator, because this is the mode of the joint, not the mode of the marginal.

Posterior marginals

The posterior marginal for 3 is simply

PEID) = [bl (D) = WSSy, vv) 427
The mode and mean of this marginal are given by
- Sn Sn
Sy = ——N E[X]=—N 4.218
P un+D+1 =] vy —D—1 ()
One can show that the posterior marginal for p has a multivariate Student T distribution:
1
D) = , 2|D)dYE =T (pumy, —— Sy, vn — D + 1 4.219
plD) = [s BIDIME = T(uimn, T Sva = D 1) 219

This follows from the fact that the Student distribution can be represented as a scaled mixture
of Gaussians (see Equation 11.61).

4.6.3.6

4.6.3.7

4.6. Inferring the parameters of an MVN 135

NIX(14=0, k=1, vy=1, ¢=1) NIX(t (=0, k=5, vy=1, c5=1) NIX(1 =0, k=1, v;=5, ¢=1)

Figure 4.19 The NIx?(mo, ko, v0,08) distribution. my is the prior mean and ro is how strongly we
believe this; o is the prior variance and v is how strongly we believe this. (a) mo = 0,k0 = 1,10 =
1,02 = 1. Notice that the contour plot (underneath the surface) is shaped like a “squashed egg”. (b) We
increase the strength of our belief in the mean, so it gets narrower: mo = 0, k0 = 5,0 = 1,08 = 1. (¢)
We increase the strength of our belief in the variance, so it gets narrower: mo = 0, k0 = 1,20 = 5,08 =
1. Figure generated by NIXdemo?2.

Posterior predictive

The posterior predictive is given by

p(x,D)
p(x|D) = B2 (4.220)
XD =)
so it can be easily evaluated in terms of a ratio of marginal likelihoods.
It turns out that this ratio has the form of a multivariate Student-T distribution:

p(x|D) = //N(X“L, S)NIW (u, E|my, kn, VN, Sn)dpdS 4.221)
Ky +1
KN(VN - D+ 1)

The Student-T has wider tails than a Gaussian, which takes into account the fact that X is
unknown. However, this rapidly becomes Gaussian-like.

= T(x\mN, SN, UN 7D+1) (4.222)

Posterior for scalar data

We now specialise the above results to the case where x; is 1d. These results are widely used
in the statistics literature. As in Section 4.6.2.2, it is conventional not to use the normal inverse

136 Chapter 4. Gaussian models

Wishart, but to use the normal inverse chi-squared or NIX distribution, defined by

NIXQ(ILL,O'2|mo,K,o,Z/0,O'(2)) £ N(pu|lmo,o?/ko) x72(02|uo,a§) (4.223)
1 2 o 2
- (72)(u0+3>/2 exp (Y090 *“O(g mo)) (4.224)
o 20

See Figure 4.19 for some plots. Along the p axis, the distribution is shaped like a Gaussian, and
along the o2 axis, the distribution is shaped like a x~2; the contours of the joint density have
a “squashed egg” appearance. Interestingly, we see that the contours for p are more peaked
for small values of o2, which makes sense, since if the data is low variance, we will be able to
estimate its mean more reliably.

One can show that the posterior is given by

p(p,0?D) = NIX*(n,0%|mn, kN, VN, 0%) (4.225)
NE
my = romo + VT (4.226)
KN

B 4.227)
vy = Vvg+ N (4.228)

N Nk

2 2 —\2 0 —\2

_ - _ 4.229
UNON oy + Zg_l(gc)+ Py N(mo T) (4.229)

The posterior marginal for o2 is just

poD) = [bl o? D)= x (Pl oh) (4230
with the posterior mean given by E [¢2|D] = e SO

The posterior marginal for ;1 has a Student T distribution, which follows from the scale
mixture representation of the student:

p(uD) = /p(/% o?|D)do* = T (plmn, 0% /K, vn) (4.231)
with the posterior mean given by E [u|D] = my.

Let us see how these results look if we use the following uninformative prior:

p(p,0?) o< p()p(0?) o 072 o< NIx?(p, 0%|po = 0,50 = 0,9 = —1,08 = 0) (4.232)
With this prior, the posterior has the form

p(u,0%|D) = NIx*(u,0|my =T, kny = N,uy = N — 1,0% = s°) (4.233)
where
N
1 N
2 A 2 ~2
§ - N —1 ;(xl 1’) - N — lamle (4.234)

is the the sample standard deviation. (In Section 6.4.2, we show that this is an unbiased
estimate of the variance.) Hence the marginal posterior for the mean is given by

2
p(u|D) =T (ulz, SN,N -1) (4.235)

4.6.3.8

4.6. Inferring the parameters of an MVN 137

and the posterior variance of p is

UN 2_N_1§_>i
w—2"NT"N_3N N

var [u|D] = (4.236)

The square root of this is called the standard error of the mean:

/var [u|D] ~ \/% (4.237)

Thus an approximate 95% posterior credible interval for the mean is

s

Iy D)=r+2— (4.238)
(Bayesian credible intervals are discussed in more detail in Section 5.2.2; they are contrasted
with frequentist confidence intervals in Section 6.6.1.)

Bayesian t-test

Suppose we want to test the hypothesis that ;1 # 11 for some known value 1 (often 0), given
values z; ~ N (u,0?). This is called a two-sided, one-sample t-test. A simple way to perform
such a test is just to check if ug € Ings(u|D). If it is not, then we can be 95% sure that
i # pp.t A more common scenario is when we want to test if two paired samples have
the same mean. More precisely, suppose y; ~ N (u1,0?) and z; ~ N (uz2,0%). We want to
determine if p = p1 — po > 0, using x; = y; — z; as our data. We can evaluate this quantity
as follows:

oo

p(p > po|D) = / p(u|D)dp (4.239)

Ho

This is called a one-sided, paired t-test. (For a similar approach to unpaired tests, comparing
the difference in binomial proportions, see Section 5.2.3.)

To calculate the posterior, we must specify a prior. Suppose we use an uninformative prior.
As we showed above, we find that the posterior marginal on p has the form

2
p(uD) =T (ulz, %N —1) (4.240)

Now let us define the following t statistic:

a T — o

;b (4.241)
where the denominator is the standard error of the mean. We see that
p(uD) =1 — Fy_1(t) (4.242)

where F,(t) is the cdf of the standard Student t distribution 7(0, 1,).

4. A more complex approach is to perform Bayesian model comparison. That is, we compute the Bayes factor (described
in Section 5.3.3) p(D|Hy)/p(D|H1), where Hy is the point null hypothesis that © = po, and H; is the alternative
hypothesis that © # pp. See (Gonen et al. 2005; Rouder et al. 2009) for details.

138 Chapter 4. Gaussian models

4.6.3.9 Connection with frequentist statistics *

If we use an uninformative prior, it turns out that the above Bayesian analysis gives the same
result as derived using frequentist methods. (We discuss frequentist statistics in Chapter 6.)
Specifically, from the above results, we see that

nw—7x
Vs/N

This has the same form as the sampling distribution of the MLE:

D~ ty (4.243)

pw—X
Vs/N

The reason is that the Student distribution is symmetric in its first two arguments, so 7 (Z|u, 02, v) =
T (u|Z,0?%,v); hence statements about the posterior for y have the same form as statements
about the sampling distribution of Z. Consequently, the (one-sided) p-value (defined in Sec-
tion 6.6.2) returned by a frequentist test is the same as p(u > po|D) returned by the Bayesian
method. See bayesTtestDemo for an example.

Despite the superficial similarity, these two results have a different interpretation: in the
Bayesian approach, j is unknown and 7 is fixed, whereas in the frequentist approach, X
is unknown and g is fixed. More equivalences between frequentist and Bayesian inference
in simple models using uninformative priors can be found in (Box and Tiao 1973). See also
Section 7.6.3.3.

|~ tn-1 (4.244)

4.6.4 Sensor fusion with unknown precisions *

In this section, we apply the results in Section 4.6.3 to the problem of sensor fusion in the
case where the precision of each measurement device is unknown. This generalizes the results
of Section 4.4.2.2, where the measurement model was assumed to be Gaussian with known
precision. The unknown precision case turns out to give qualitatively different results, yielding
a potentially multi-modal posterior as we will see. Our presentation is based on (Minka 2001e).

Suppose we want to pool data from multiple sources to estimate some quantity p« € R, but the
reliability of the sources is unknown. Specifically, suppose we have two different measurement
devices, x and y, with different precisions: x[pu ~ N(p, A\, ') and yilp ~ N(u, A1), We
make two independent measurements with each device, which turn out to be

T = 1.1,332 = 1.9,y1 = 2.9,y2 =4.1 (4245)

We will use a non-informative prior for g, p(u) o 1, which we can emulate using an infinitely
broad Gaussian, p(p) = N (u|mg = 0,\;* = c0). If the \, and), terms were known, then
the posterior would be Gaussian:

p(plDAe, Ny) = N(ulmu, Ay (4.246)
A = do+Nodo + Ny, (4.247)
my = JelNeTEANGY (4.248)

Nads + NN,

4.6. Inferring the parameters of an MVN 139

where IV, = 2 is the number of measurements, N, = 2 is the number of y measurements,
T = 1\% 25\21 r;=15and §y = N%J Zf\;yl y; = 3.5. This result follows because the posterior
precision is the sum of the measurement precisions, and the posterior mean is a weighted sum
of the prior mean (which is 0) and the data means.

However, the measurement precisions are not known. Initially we will estimate them by
maximum likelihood. The log-likelihood is given by

Az 2 Ay 2
Up, Agy Ay) = log Ay — > ;(CEZ —)" +log Ay — o ;(yz — 1) (4.249)
The MLE is obtained by solving the following simultaneous equations:
ol _ _
o = XNN(T—p)+ A Ny(T—p) =0 (4.250)
N,
ot 11)
- S (m—p)?= 4.251
O, N N, izl(“" W =0 .25
N
ot 11)
L = - =0 4.252
a)\y)\y) & (yz ﬂ) ()
This gives
N AT + NyA, g
po= et Ny (4.253)
NaAz + NyAy
< 1
/N, = N, 2 (z; — f1)? (4.254)
/A, = ! (y; — p)? (4.255)

We notice that the MLE for ;4 has the same form as the posterior mean, m .
We can solve these equations by fixed point iteration. Let us initialize by estimating A\, = 1/s2

and \, = 1/s2, where s? = NLT ZZ\;(% —7)?=0.16 and s, = N%J vaz“’l (yi —7)? = 0.36.
Using this, we get i = 2.1154, so p(u|D, Ay, Ay) = N (1]2.1154,0.0554). If we now iterate,
we converge to A, = 1/0.1662, A, = 1/4.0509, p(u|D, Ay, Ay) = N (1|1.5788,0.0798).

The plug-in approximation to the posterior is plotted in Figure 4.20(a). This weights each
sensor according to its estimated precision. Since sensor y was estimated to be much less

reliable than sensor z, we have E {MD, A, S\y} ~ T, so we effectively ignore the ¥ sensor.

Now we will adopt a Bayesian approach and integrate out the unknown precisions, rather
than trying to estimate them. That is, we compute

p(uID) o p() [[ol mp(mmdxz] [[5@yl 7,)00), (4.2560)

We will use uninformative Jeffrey’s priors, p(p) o< 1, p(Az|p) o< 1/A; and p(Ay|p) o< 1/A,,.

140 Chapter 4. Gaussian models

Since the = and y terms are symmetric, we will just focus on one of them. The key integral is
I= /p(Dmlu, Aa)pAa|p)dAs o //_;1(1\7.%/\»6)]“”/2 (4.257)
exp (—Z\;:”Am(x —p)? -]\;xsi)\z) dAg (4.258)
Exploiting the fact that V,, = 2 this simplifies to
. / AL exp(— A [—)2 + 82])dAs (4.259)

We recognize this as proportional to the integral of an unnormalized Gamma density
Ga(\|a,b) oc \@7te™? (4.260)

where @ = 1 and b = (T — p)? + s2. Hence the integral is proportional to the normalizing
constant of the Gamma distribution, I'(a)b~%, so we get

I x /p(Dxm,)\x)p(/\wm)d/\I x (5—11)24—356)71 (4.261)

and the posterior becomes

1 1
G-+ G-+

The exact posterior is plotted in Figure 4.20(b). We see that it has two modes, one near
T = 1.5 and one near § = 3.5. These correspond to the beliefs that the x sensor is more
reliable than the y one, and vice versa. The weight of the first mode is larger, since the data
from the x sensor agree more with each other, so it seems slightly more likely that the x sensor
is the reliable one. (They obviously cannot both be reliable, since they disagree on the values
that they are reporting.) However, the Bayesian solution keeps open the possibility that the y
sensor is the more reliable one; from two measurements, we cannot tell, and choosing just the
x sensor, as the plug-in approximation does, results in over confidence (a posterior that is too
narrow).

p(p|D) (4.262)

Exercises

Exercise 4.1 Uncorrelated does not imply independent

Let X ~ U(—1,1) and Y = X?. Clearly Y is dependent on X (in fact, Y is uniquely determined
by X). However, show that p(X,Y) = 0. Hint: if X ~ U(a,b) then E[X] = (a + b)/2 and
var [X] = (b— a)?/12.

Exercise 4.2 Uncorrelated and Gaussian does not imply independent unless jointly Gaussian

Let X ~ N(0,1) and Y = WX, where p(W = —1) = p(W = 1) = 0.5. It is clear that X and Y are
not independent, since Y is a function of X.

a. Show Y ~ N(0,1).

4.6. Inferring the parameters of an MVN 141

0.7}
0.6f
0.5f
0.4f
0.3
0.5
0.2

0.1F

Figure 4.20 Posterior for p. (a) Plug-in approximation. (b) Exact posterior. Figure generated by
sensorFusionUnknownPrec.

b. Show cov [X,Y] = 0. Thus X and Y are uncorrelated but dependent, even though they are Gaussian.
Hint: use the definition of covariance

cov[X, Y] =E[XY]-E[X]|E[Y] (4.263)
and the rule of iterated expectation
E[XY]=E[E[XY|W]] (4.264)
Exercise 4.3 Correlation coefficient is between -1 and +1
Prove that —1 < p(X,Y) <1
Exercise 4.4 Correlation coefficient for linearly related variables is £1
Show that, if Y = aX + b for some parameters a > 0 and b, then p(X,Y’) = 1. Similarly show that if
a < 0, then p(X,Y) = —1.
Exercise 4.5 Normalization constant for a multidimensional Gaussian
Prove that the normalization constant for a d-dimensional Gaussian is given by

(27T)d/2|2|% = /exp(—%(x —u)"'E N (x = p))dx (4.265)

Hint: diagonalize 3 and use the fact that [X| = J], A: to write the joint pdf as a product of d one-
dimensional Gaussians in a transformed coordinate system. (You will need the change of variables formula.)
Finally, use the normalization constant for univariate Gaussians.

Exercise 4.6 Bivariate Gaussian
Let x ~ N (u, 3) where x € R? and

s—(of oo (4.266)
pPO102 o3 ’
where p is the correlation coefficient. Show that the pdf is given by
1
plrr,22) = —————— (4.267)

2ro1024/1 — p?

1 ((:m —)’ (w2 =) gL 1) (@2 = “2)>)4.268)

P <_2(1—P2) of o1 o2

142 Chapter 4. Gaussian models

raw standarized

260 1 2235

whitened

3522

1
289 4067
66" goB154852

532433
6239

Wy

45
645088
4605y 71
25

N

Figure 4.21 (a) Height/weight data for the men. (b) Standardized. (c) Whitened.

Exercise 4.7 Conditioning a bivariate Gaussian
Consider a bivariate Gaussian distribution p(z1, z2) = N (z|u, X) where

2 a1
Z = (01 0122> = 0102 (02 0,02) (4269)
021 02 [
where the correlation coefficient is given by

a 012 (4.270)

p
0102

a. What is P(X2|z1)? Simplify your answer by expressing it in terms of p, o2, o1, p1,u2 and ;.
b. Assume o1 = g2 = 1. What is P(X2|z1) now?

Exercise 4.8 Whitening vs standardizing

a. Load the height/weight data using rawdata = dlmread(’heightWeightData.txt’). The first col-
umn is the class label (I=male, 2=female), the second column is height, the third weight. Extract the
height/weight data corresponding to the males. Fit a 2d Gaussian to the male data, using the empirical
mean and covariance. Plot your Gaussian as an ellipse (use gaussPlot2d), superimposing on your
scatter plot. It should look like Figure 4.21(a), where have labeled each datapoint by its index. Turn in
your figure and code.

b. Standardizing the data means ensuring the empirical variance along each dimension is 1. This can be

Tij—Tj
replot. It should look like Figure 4.21(b). (Use axis(’equal’).) Turn in your figure and code.

c. Whitening or sphereing the data means ensuring its empirical covariance matrix is proportional to
I, so the data is uncorrelated and of equal variance along each dimension. This can be done by

done by computing , where o is the empirical std of dimension j. Standardize the data and

computing A~ 2U"x for each data vector x, where U are the eigenvectors and A the eigenvalues of
X. Whiten the data and replot. It should look like Figure 4.21(c). Note that whitening rotates the data,
so people move to counter-intuitive locations in the new coordinate system (see e.g., person 2, who
moves from the right hand side to the left).

Exercise 4.9 Sensor fusion with known variances in 1d
Suppose we have two sensors with known (and different) variances v1 and v, but unknown (and the same)
W N (1, v1) from the first sensor and n2 observations

i

mean f. Suppose we observe n; observations y

4.6. Inferring the parameters of an MVN 143

y§2) ~ N(u,v2) from the second sensor. (For example, suppose i is the true temperature outside,
and sensor 1 is a precise (low variance) digital thermosensing device, and sensor 2 is an imprecise (high
variance) mercury thermometer.) Let D represent all the data from both sensors. What is the posterior
p(p|D), assuming a non-informative prior for g (which we can simulate using a Gaussian with a precision
of 0)? Give an explicit expression for the posterior mean and variance.

Exercise 4.10 Derivation of information form formulae for marginalizing and conditioning

Derive the information form results of Section 4.3.1.

Exercise 4.11 Derivation of the NIW posterior

Derive Equation 4.209. Hint: one can show that

N (X — p) (X —)" + ko(p — mo) (1 — mo) " 4271

FolN (e — mo)(® — mo)” (4.272)

=kn(p—my)(p—my)" + e

This is a matrix generalization of an operation called completing the square.’

Derive the corresponding result for the normal-Wishart model.

Exercise 4.12 BIC for Gaussians
(Source: Jaakkola.)

The Bayesian information criterion (BIC) is a penalized log-likelihood function that can be used for model
selection (see Section 5.3.2.4). It is defined as

BIC =1ogp(D|0n1) — g log(N) (4.273)

where d is the number of free parameters in the model and N is the number of samples. In this question,
we will see how to use this to choose between a full covariance Gaussian and a Gaussian with a diagonal
covariance. Obviously a full covariance Gaussian has higher likelihood, but it may not be “worth” the extra
parameters if the improvement over a diagonal covariance matrix is too small. So we use the BIC score to
choose the model.

Following Section 4.1.3, we can write

. N R N N
logp(DIE,p) = —Ftr (z 1s) — 5 log(IZ) 4.274)
1 N
.1 o
S = N ZEZI(XZ X)(x; — X) (4.275)

where S is the scatter matrix (empirical covariance), the trace of a matrix is the sum of its diagonals, and
we have used the trace trick.

a. Derive the BIC score for a Gaussian in D dimensions with full covariance matrix. Simplify your answer
as much as possible, exploiting the form of the MLE. Be sure to specify the number of free parameters

b. Derive the BIC score for a Gaussian in D dimensions with a diagonal covariance matrix. Be sure to
specify the number of free parameters d. Hint: for the digaonal case, the ML estimate of 3 is the same

as 21 except the off-diagonal terms are zero:

ﬁ:dmg = diag(ﬁhu[,(l,1),...,2A{L(D,D)) (4.276)

5. In the scalar case, completing the square means rewriting cox? + c1z + ¢p as —a(x — b)2 + w where a = —co,

2
_ < — 4
b= 30 and w = I + co.

144 Chapter 4. Gaussian models

Exercise 4.13 Gaussian posterior credible interval
(Source: DeGroot.)
Let X ~ N (u,0? = 4) where p is unknown but has prior & ~ N (uo, 0% = 9). The posterior after
seeing 1 samples is pt ~ N(pin,o2). (This is called a credible interval, and is the Bayesian analog of a
confidence interval.) How big does n have to be to ensure

p(l < pn < wu|lD) >0.95 (4.277)

where (¢, u) is an interval (centered on py) of width 1 and D is the data. Hint: recall that 95% of the
probability mass of a Gaussian is within +1.960 of the mean.

Exercise 4.14 MAP estimation for 1D Gaussians
(Source: Jaakkola.)
Consider samples x1,...,x, from a Gaussian random variable with known variance o2 and unknown

mean p. We further assume a prior distribution (also Gaussian) over the mean, p ~ N (m, s?), with fixed
mean m and fixed variance s2. Thus the only unknown is .

a. Calculate the MAP estimate [iasap. You can state the result without proof. Alternatively, with a lot
more work, you can compute derivatives of the log posterior, set to zero and solve.

b. Show that as the number of samples n increase, the MAP estimate converges to the maximum likelihood
estimate.

c. Suppose n is small and fixed. What does the MAP estimator converge to if we increase the prior
variance 5?2

d. Suppose n is small and fixed. What does the MAP estimator converge to if we decrease the prior
variance s2?

Exercise 4.15 Sequential (recursive) updating of 3
(Source: (Duda et al. 2001, Q3.35,3.36).)
The unbiased estimates for the covariance of a d-dimensional Gaussian based on n samples is given by
. 1 n T
»=C, = > (xi = mp)(x; — my,) (4.278)

n—1+4
=1

It is clear that it takes O(nd2) time to compute C,,. If the data points arrive one at a time, it is more
efficient to incrementally update these estimates than to recompute from scratch.

a. Show that the covariance can be sequentially udpated as follows

n—1

1
Chri1 = n+ ni(xnﬁ»l —my)(Xnt1 — mn)T (4.279)

+1
b. How much time does it take per sequential update? (Use big-O notation.)
c. Show that we can sequentially update the precision matrix using

-1 n -1 Cr' (%Xng1 — my) (Xny1 — m,) " Cy!

Coi, = c,l— (4.280)

% + (Xn+1 - mn)TC:Ll(xn+l - mn)

n—1

Hint: notice that the update to C, 41 consists of adding a rank-one matrix, namely uu”, where
U = Xp41 — My,. Use the matrix inversion lemma for rank-one updates (Equation 4.111), which we
repeat here for convenience:
E 'uvTE™!
E+u)™t = E'-2 — 4.281
(E+) 1+vTE-1u ()

4.6. Inferring the parameters of an MVN 145

d. What is the time complexity per update?

Exercise 4.16 Likelihood ratio for Gaussians

Source: Source: Alpaydin pl03 ex 4. Consider a binary classifier where the K class conditional densities
are MVN p(z|y = j) = N(x|u;, X;). By Bayes rule, we have

ply =1|z) plzly =1) ply=1)
o8 Ly = Of) ~ %% paly=0) 8 Ly = 0) .26

In other words, the log posterior ratio is the log likelihood ratio plus the log prior ratio. For each of the 4
cases in the table below, derive an expression for the log likelihood ratio log 5 gi}zj};, simplifying as much
as possible.

Form of 3J; Cov Num parameters

Arbitrary 3, Kd(d+1)/2

Shared Y= d(d+1)/2

Shared, axis-aligned 3; = X with ¥;; =0fori#j d

Shared, spherical 3= oI 1

Exercise 4.17 LDA/QDA on height/weight data

The function discrimAnalysisHeightWeightDemo fits an LDA and QDA model to the height/weight
data. Compute the misclassification rate of both of these models on the training set. Turn in your numbers
and code.

Exercise 4.18 Naive Bayes with mixed features

Consider a 3 class naive Bayes classifier with one binary feature and one Gaussian feature:
y ~Mu(ylm, 1), a1y = ¢ ~ Ber(z1]0e), a2ly = ¢ ~ N (w2 e, 07) (4.283)
Let the parameter vectors be as follows:

7 = (0.5,0.25,0.25), 8 = (0.5,0.5,0.5), p = (—1,0,1), 0% = (1,1,1) (4.284)

a. Compute p(y|z1 = 0,22 = 0) (the result should be a vector of 3 numbers that sums to 1).
b. Compute p(y|z1 = 0).
c. Compute p(y|z2 = 0).

d. Explain any interesting patterns you see in your results. Hint: look at the parameter vector 6.

Exercise 4.19 Decision boundary for LDA with semi tied covariances

Consider a generative classifier with class conditional densities of the form N (x|u,., 3:). In LDA, we
assume X, = X, and in QDA, each X is arbitrary. Here we consider the 2 class case in which
3, = k3, for k > 1. That is, the Gaussian ellipsoids have the same “shape”, but the one for class 1
is “wider”. Derive an expression for p(y = 1|x, 8), simplifying as much as possible. Give a geometric
interpretation of your result, if possible.

Exercise 4.20 Logistic regression vs LDA/QDA

(Source: Jaakkola.) Suppose we train the following binary classifiers via maximum likelihood.

a. Gaussl: A generative classifier, where the class conditional densities are Gaussian, with both covariance
matrices set to I (identity matrix), i.e., p(x|y = ¢) = N (x|p., I). We assume p(y) is uniform.

b. GaussX: as for Gaussl, but the covariance matrices are unconstrained, i.e., p(x|y = ¢) = N (x|p., X¢).

146 Chapter 4. Gaussian models

c. LinLog: A logistic regression model with linear features.
d. QuadLog: A logistic regression model, using linear and quadratic features (i.e., polynomial basis function
expansion of degree 2).

After training we compute the performance of each model M on the training set as follows:

1o R
L(M) = — logp(y:x:, 0, M) (4.285)

=1

(Note that this is the conditional log-likelihood p(y|x, 6) and not the joint log-likelihood p(y,x|0).) We
now want to compare the performance of each model. We will write L(M) < L(M’) if model M must
have lower (or equal) log likelihood (on the training set) than M’, for any training set (in other words, M is
worse than M, at least as far as training set logprob is concerned). For each of the following model pairs,
state whether L(M) < L(M'), LgM) > L(M'), or whether no such statement can be made (i.e., M
might sometimes be better than M’ and sometimes worse); also, for each question, briefly (1-2 sentences)
explain why.

. Gaussl, LinLog.

. GaussX, QuadLog.
. LinLog, QuadLog.

. Gaussl, QuadLog.

e. Now suppose we measure performance in terms of the average misclassification rate on the training
set:

o o o

on

1 n
R(M) = — I(y: # 9(xi 4.286
(M) n;(yséy(x» (4.286)
Is it true in general that L(M) > L(M') implies that R(M) < R(M’)? Explain why or why not.
Exercise 4.21 Gaussian decision boundaries
(Source: (Duda et al. 2001, Q3.7)) Let p(z|y = j) = N (x|p;,0;) where j = 1,2 and p1 = 0,07 =

1,2 = 1,05 = 10°. Let the class priors be equal, p(y = 1) = p(y = 2) = 0.5.

a. Find the decision region

Ry = {z: p(z|p, 01) > p(a|ps, 02)} (4.287)
Sketch the result. Hint: draw the curves and find where they intersect. Find both solutions of the
equation

p(z|p1, 01) = p(a|pz, o2) (4.288)

Hint: recall that to solve a quadratic equation az?® + bz 4 ¢ = 0, we use

- —b+Vb% — 4dac

4.289
% ()

b. Now suppose o2 = 1 (and all other parameters remain the same). What is R; in this case?

4.6. Inferring the parameters of an MVN

Exercise 4.22 QDA with 3 classes

Consider a three category classification problem. Let the prior probabilites:

P(Y=1)=P(Y=2)=P(Y =3)=1/3

The class-conditional densities are multivariate normal densities with parameters:

H1 = [030]T7:U’2 = [15 l]Tv/"‘?) = [7171}T

0.7 0 08 0.2 08 02
El_{ }’22_{02 0.8]’23_[0.2 0.8}

Classify the following points:

a. x=[—0.5,0.5]
b. x = [0.5,0.5]

Exercise 4.23 Scalar QDA

147

(4.290)

(4.291)

(4.292)

[Note: you can solve this exercise by hand or using a computer (matlab, R, whatever). In either case, show
your work.] Consider the following training set of heights « (in inches) and gender y (male/female) of some

US college students: x = (67,79,71,68,67,60), y = (m,m,m, f, f, f).

a. Fit a Bayes classifier to this data, using maximum likelihood estimation, i.e., estimate the parameters of

the class conditional likelihoods
plzly =c) = N(x, e, Oc)
and the class prior

ply =c) =

(4.293)

(4.294)

What are your values of i, o¢, 7 for ¢ = m, f? Show your work (so you can get partial credit if you

make an arithmetic error).

b. Compute p(y = m|z,6), where = 72, and 0 are the MLE parameters. (This is called a plug-in

prediction.)

c. What would be a simple way to extend this technique if you had multiple attributes per person, such

as height and weight? Write down your proposed model as an equation.

5.1

5.2

5.2.1

Bayesian statistics

Introduction

We have now seen a variety of different probability models, and we have discussed how to
fit them to data, ie., we have discussed how to compute MAP parameter estimates 8 =
argmax p(0|D), using a variety of different priors. We have also discussed how to compute
the full posterior p(@|D), as well as the posterior predictive density, p(x|D), for certain special
cases (and in later chapters, we will discuss algorithms for the general case).

Using the posterior distribution to summarize everything we know about a set of unknown
variables is at the core of Bayesian statistics. In this chapter, we discuss this approach to
statistics in more detail. In Chapter 6, we discuss an alternative approach to statistics known as
frequentist or classical statistics.

Summarizing posterior distributions

The posterior p(@|D) summarizes everything we know about the unknown quantities 6. In this
section, we discuss some simple quantities that can be derived from a probability distribution,
such as a posterior. These summary statistics are often easier to understand and visualize than
the full joint.

MAP estimation

We can easily compute a point estimate of an unknown quantity by computing the posterior
mean, median or mode. In Section 5.7, we discuss how to use decision theory to choose between
these methods. Typically the posterior mean or median is the most appropriate choice for a real-
valued quantity, and the vector of posterior marginals is the best choice for a discrete quantity.
However, the posterior mode, aka the MAP estimate, is the most popular choice because it
reduces to an optimization problem, for which efficient algorithms often exist. Futhermore, MAP
estimation can be interpreted in non-Bayesian terms, by thinking of the log prior as a regularizer
(see Section 6.5 for more details).

Although this approach is computationally appealing, it is important to point out that there
are various drawbacks to MAP estimation, which we briefly discuss below. This will provide
motivation for the more thoroughly Bayesian approach which we will study later in this chapter
(and elsewhere in this book).

5.2.11

5.2.1.2

5.2.1.3

150 Chapter 5. Bayesian statistics

45 0.9

ab 08

35F 0.7

3r 0.6

25F 0.5

2r 0.4

151 0.3

1 0.2

Figure 5.1 (a) A bimodal distribution in which the mode is very untypical of the distribution. The thin
blue vertical line is the mean, which is arguably a better summary of the distribution, since it is near the
majority of the probability mass. Figure generated by bimodalDemo. (b) A skewed distribution in which
the mode is quite different from the mean. Figure generated by gammaPlotDemo.

No measure of uncertainty

The most obvious drawback of MAP estimation, and indeed of any other point estimate such
as the posterior mean or median, is that it does not provide any measure of uncertainty. In
many applications, it is important to know how much one can trust a given estimate. We can
derive such confidence measures from the posterior, as we discuss in Section 5.2.2.

Plugging in the MAP estimate can result in overfitting

In machine learning, we often care more about predictive accuracy than in interpreting the
parameters of our models. However, if we don’'t model the uncertainty in our parameters, then
our predictive distribution will be overconfident. We saw several examples of this in Chapter 3,
and we will see more examples later. Overconfidence in predictions is particularly problematic
in situations where we may be risk averse; see Section 5.7 for details.

The mode is an untypical point

Choosing the mode as a summary of a posterior distribution is often a very poor choice, since
the mode is usually quite untypical of the distribution, unlike the mean or median. This is
illustrated in Figure 5.1(a) for a 1d continuous space. The basic problem is that the mode is a
point of measure zero, whereas the mean and median take the volume of the space into account.
Another example is shown in Figure 5.1(b): here the mode is 0, but the mean is non-zero. Such
skewed distributions often arise when inferring variance parameters, especially in hierarchical
models. In such cases the MAP estimate (and hence the MLE) is obviously a very bad estimate.

How should we summarize a posterior if the mode is not a good choice? The answer is to
use decision theory, which we discuss in Section 5.7. The basic idea is to specify a loss function,
where L(6,0) is the loss you incur if the truth is @ and your estimate is 6. If we use 0-1 loss,

L(6,6) = 1(0 +# 6), then the optimal estimate is the posterior mode. 0-1 loss means you only
get “points” if you make no errors, otherwise you get nothing: there is no “partial credit” under

5.2.1.4

5.2. Summarizing posterior distributions 151

1

0.9 ,
08 i
0.7 i
06 ,
05 ,
0.4
03 1
0.2 g

0.1 Py g

0
0 2 4 6 8 10 12
Figure 5.2 Example of the transformation of a density under a nonlinear transform. Note how the mode
of the transformed distribution is not the transform of the original mode. Based on Exercise 1.4 of (Bishop
2006b). Figure generated by bayesChangeOfVar.

this loss function! For continuous-valued quantities, we often prefer to use squared error loss,
L(0,0) = (§ —0); the corresponding optimal estimator is then the posterior mean, as we show
in Section 5.7. Or we can use a more robust loss function, L(6,0) = |0 — 0|, which gives rise to
the posterior median.

MAP estimation is not invariant to reparameterization *

A more subtle problem with MAP estimation is that the result we get depends on how we pa-
rameterize the probability distribution. Changing from one representation to another equivalent
representation changes the result, which is not very desirable, since the units of measurement
are arbitrary (e.g., when measuring distance, we can use centimetres or inches).

To understand the problem, suppose we compute the posterior for z. If we define y = f(x),
the distribution for y is given by Equation 2.87, which we repeat here for convenience:

d
py(y) = pa(2)| d% 5.

The |j—z| term is called the Jacobian, and it measures the change in size of a unit volume passed
through f. Let & = argmax, p.(z) be the MAP estimate for . In general it is not the case
that § = argmax, p, (y) is given by f(&). For example, let z ~ N'(6,1) and y = f(z), where

1

f) = 1+ exp(—z +5)

(5.2)
We can derive the distribution of y using Monte Carlo simulation (see Section 2.7.1). The result
is shown in Figure 5.2. We see that the original Gaussian has become “squashed” by the sigmoid
nonlinearity. In particular, we see that the mode of the transformed distribution is not equal to
the transform of the original mode.

5.2.2

152 Chapter 5. Bayesian statistics

To see how this problem arises in the context of MAP estimation, consider the following
example, due to Michael Jordan. The Bernoulli distribution is typically parameterized by its
mean 4, so p(y = 1|u) = u, where y € {0,1}. Suppose we have a uniform prior on the
unit interval: p, () = 1 I(0 < p < 1). If there is no data, the MAP estimate is just the
mode of the prior, which can be anywhere between 0 and 1. We will now show that different
parameterizations can pick different points in this interval arbitrarily.

First let 0 =/ so p = 2. The new prior is

dp
po(0) = pu(p)| 55| = 20 (5.3)
for 0 € [0, 1] so the new mode is

Oriap = arg max 20 = 1 (5.4)
0€[0,1]

Now let =1 — /1 — p. The new prior is

Po() = p,t(u)l%l =2(1—-¢) (5.5)

for ¢ € [0, 1], so the new mode is

QASMAp:arg max 2—2¢p =0 (5.6)
¢€[0,1]
Thus the MAP estimate depends on the parameterization. The MLE does not suffer from this
since the likelihood is a function, not a probability density. Bayesian inference does not suffer
from this problem either, since the change of measure is taken into account when integrating
over the parameter space.
One solution to the problem is to optimize the following objective function:

6 = argmax p(D|0)p(0)[1(6)| = (5.7)

Here I(0) is the Fisher information matrix associated with p(x|@) (see Section 6.2.2). This
estimate is parameterization independent, for reasons explained in (Jermyn 2005; Druilhet and
Marin 2007). Unfortunately, optimizing Equation 5.7 is often difficult, which minimizes the
appeal of the whole approach.

Credible intervals

In addition to point estimates, we often want a measure of confidence. A standard measure of
confidence in some (scalar) quantity 6 is the “width” of its posterior distribution. This can be
measured using a 100(1 — «)% credible interval, which is a (contiguous) region C' = (¢, u)
(standing for lower and upper) which contains 1 — « of the posterior probability mass, i.e.,

Co(D)=(lu): PU<O<uD)=1-a (5.8)

There may be many such intervals, so we choose one such that there is (1 — «)/2 mass in each
tail; this is called a central interval.

5.2.2.1

5.2. Summarizing posterior distributions 153
351 35

25F 25

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(@) (b)

Figure 5.3 (a) Central interval and (b) HPD region for a Beta(3,9) posterior. The CI is (0.06, 0.52) and the
HPD is (0.04, 0.48). Based on Figure 3.6 of (Hoff 2009). Figure generated by betaHPD.

If the posterior has a known functional form, we can compute the posterior central interval
using / = F~1(a/2) and u = F~1(1—/2), where F is the cdf of the posterior. For example, if
the posterior is Gaussian, p(8|D) = N (0,1), and a = 0.05, then we have £ = ®(«/2) = —1.96,
and ©u = ®(1 — a/2) = 1.96, where ® denotes the cdf of the Gaussian. This is illustrated in
Figure 2.3(c). This justifies the common practice of quoting a credible interval in the form of
1 £ 20, where p represents the posterior mean, o represents the posterior standard deviation,
and 2 is a good approximation to 1.96.

Of course, the posterior is not always Gaussian. For example, in our coin example, if we
use a uniform prior and we observe N; = 47 heads out of N = 100 trials, then the posterior
is a beta distribution, p(0|D) = Beta(48,54). We find the 95% posterior credible interval is
(0.3749,0.5673) (see betaCredibleInt for the one line of Matlab code we used to compute
this).

If we don’t know the functional form, but we can draw samples from the posterior, then we
can use a Monte Carlo approximation to the posterior quantiles: we simply sort the S samples,
and find the one that occurs at location «/.S along the sorted list. As S — oo, this converges
to the true quantile. See mcQuantileDemo for a demo.

People often confuse Bayesian credible intervals with frequentist confidence intervals. How-
ever, they are not the same thing, as we discuss in Section 6.6.1. In general, credible intervals are
usually what people want to compute, but confidence intervals are usually what they actually
compute, because most people are taught frequentist statistics but not Bayesian statistics. Fortu-
nately, the mechanics of computing a credible interval is just as easy as computing a confidence
interval (see e.g., betaCredibleInt for how to do it in Matlab).

Highest posterior density regions *

A problem with central intervals is that there might be points outside the CI which have higher
probability density. This is illustrated in Figure 5.3(a), where we see that points outside the
left-most CI boundary have higher density than those just inside the right-most CI boundary.
This motivates an alternative quantity known as the highest posterior density or HPD region.
This is defined as the (set of) most probable points that in total constitute 100(1 — «)% of the

5.2.3

154 Chapter 5. Bayesian statistics

() (b)

Figure 5.4 (a) Central interval and (b) HPD region for a hypothetical multimodal posterior. Based on
Figure 2.2 of (Gelman et al. 2004). Figure generated by postDensityIntervals.

probability mass. More formally, we find the threshold p* on the pdf such that

| —a= / p(0|D)d6 5.9
0:p(0| D) >p*
and then define the HPD as
Co(D) ={0:p(0|D) > p"} (5.10)

In 1d, the HPD region is sometimes called a highest density interval or HDIL. For example,
Figure 5.3(b) shows the 95% HDI of a Beta(3,9) distribution, which is (0.04,0.48). We see that
this is narrower than the CI, even though it still contains 95% of the mass; furthermore, every
point inside of it has higher density than every point outside of it.

For a unimodal distribution, the HDI will be the narrowest interval around the mode contain-
ing 95% of the mass. To see this, imagine “water filling” in reverse, where we lower the level
until 95% of the mass is revealed, and only 5% is submerged. This gives a simple algorithm for
computing HDIs in the 1d case: simply search over points such that the interval contains 95%
of the mass and has minimal width. This can be done by 1d numerical optimization if we know
the inverse CDF of the distribution, or by search over the sorted data points if we have a bag of
samples (see betaHPD for a demo).

If the posterior is multimodal, the HDI may not even be a connected region: see Figure 5.4(b)
for an example. However, summarizing multimodal posteriors is always difficult.

Inference for a difference in proportions

Sometimes we have multiple parameters, and we are interested in computing the posterior
distribution of some function of these parameters. For example, suppose you are about to buy
something from Amazon.com, and there are two sellers offering it for the same price. Seller 1
has 90 positive reviews and 10 negative reviews. Seller 2 has 2 positive reviews and 0 negative
reviews. Who should you buy from?!

1. This example is from www.johndcook.com/blog/2011/09/27/bayesian-amazon. See also lingpipe-blog.c

om/2009/10/13/bayesian-counterpart-to-fisher-exact-test-on-contingency-tables.

5.3

5.3. Bayesian model selection 155

(6, 1gata)
<o . P(8data)

Figure 5.5 (a) Exact posteriors p(6;|D;). (b) Monte Carlo approximation to p(6|D). We use kernel density
estimation to get a smooth plot. The vertical lines enclose the 95% central interval. Figure generated by
amazonSellerDemo,

On the face of it, you should pick seller 2, but we cannot be very confident that seller 2 is
better since it has had so few reviews. In this section, we sketch a Bayesian analysis of this
problem. Similar methodology can be used to compare rates or proportions across groups for a
variety of other settings.

Let 6; and 65 be the unknown reliabilities of the two sellers. Since we don’t know much
about them, we'll endow them both with uniform priors, §; ~ Beta(1,1). The posteriors are
p(91|D1) = Beta(91, 11) and p(02|D2) = Beta(?), 1)

We want to compute p(6; > 602]|D). For convenience, let us define § = 6; — 0 as the
difference in the rates. (Alternatively we might want to work in terms of the log-odds ratio.) We
can compute the desired quantity using numerical integration:

1 1
p(6>0/D) = / / 16, > 6)Beta(Bylys + 1, Ny —y + 1)
0 0
Beta(92|y2 + 1, N2 — Y2 + 1)d91d02 (511)

We find p(§ > 0|D) = 0.710, which means you are better off buying from seller 1! See
amazonSellerDemo for the code. (It is also possible to solve the integral analytically (Cook
2005).)

A simpler way to solve the problem is to approximate the posterior p(6|D) by Monte Carlo
sampling. This is easy, since #; and 65 are independent in the posterior, and both have beta
distributions, which can be sampled from using standard methods. The distributions p(6;|D;)
are shown in Figure 5.5(a), and a MC approximation to p(4|D), together with a 95% HPD, is
shown Figure 5.5(b). An MC approximation to p(é > 0|D) is obtained by counting the fraction
of samples where 61 > 65; this turns out to be 0.718, which is very close to the exact value. (See
amazonSellerDemo for the code.)

Bayesian model selection

In Figure 118, we saw that using too high a degree polynomial results in overfitting, and using
too low a degree results in underfitting. Similarly, in Figure 7.8(a), we saw that using too small

5.3.1

156 Chapter 5. Bayesian statistics

a regularization parameter results in overfitting, and too large a value results in underfitting. In
general, when faced with a set of models (i.e., families of parametric distributions) of different
complexity, how should we choose the best one? This is called the model selection problem.

One approach is to use cross-validation to estimate the generalization error of all the candiate
models, and then to pick the model that seems the best. However, this requires fitting each
model K times, where K is the number of CV folds. A more efficient approach is to compute
the posterior over models,

p(D[m)p(m)
ZmEM p(m’ D)
From this, we can easily compute the MAP model, 7 = argmaxp(m|D). This is called
Bayesian model selection.

If we use a uniform prior over models, p(m) o 1, this amounts to picking the model which
maximizes

p(Dlm) = / p(D]0)p(6]m)d6 613

p(m|D) = (5.12)

This quantity is called the marginal likelihood, the integrated likelihood, or the evidence for
model m. The details on how to perform this integral will be discussed in Section 5.3.2. But
first we give an intuitive interpretation of what this quantity means.

Bayesian Occam’s razor

One might think that using p(D|m) to select models would always favor the model with the
most parameters. This is true if we use p(D|ém) to select models, where 0,,, is the MLE or
MAP estimate of the parameters for model m, because models with more parameters will fit the
data better, and hence achieve higher likelihood. However, if we integrate out the parameters,
rather than maximizing them, we are automatically protected from overfitting: models with
more parameters do not necessarily have higher marginal likelihood. This is called the Bayesian
Occam’s razor effect (MacKay 1995b; Murray and Ghahramani 2005), named after the principle
known as Occam’s razor, which says one should pick the simplest model that adequately
explains the data.

One way to understand the Bayesian Occam’s razor is to notice that the marginal likelihood
can be rewritten as follows, based on the chain rule of probability (Equation 2.5):

p(D) = p(y1)p(y2|y1)p(ysly12) - - - p(ynly1.n—1) (5.14)

where we have dropped the conditioning on x for brevity. This is similar to a leave-one-out
cross-validation estimate (Section 1.4.8) of the likelihood, since we predict each future point given
all the previous ones. (Of course, the order of the data does not matter in the above expression.)
If a model is too complex, it will overfit the “early” examples and will then predict the remaining
ones poorly.

Another way to understand the Bayesian Occam’s razor effect is to note that probabilities must
sum to one. Hence) ,,, p(D’|m) = 1, where the sum is over all possible data sets. Complex
models, which can predict many things, must spread their probability mass thinly, and hence
will not obtain as large a probability for any given data set as simpler models. This is sometimes

5.3. Bayesian model selection 157

1S

Dg D

Figure 5.6 A schematic illustration of the Bayesian Occam’s razor. The broad (green) curve corresponds
to a complex model, the narrow (blue) curve to a simple model, and the middle (red) curve is just right.
Based on Figure 3.13 of (Bishop 2006a). See also (Murray and Ghahramani 2005, Figure 2) for a similar plot
produced on real data.

called the conservation of probability mass principle, and is illustrated in Figure 5.6. On the
horizontal axis we plot all possible data sets in order of increasing complexity (measured in
some abstract sense). On the vertical axis we plot the predictions of 3 possible models: a simple
one, Mi; a medium one, Ms; and a complex one, M3. We also indicate the actually observed
data Dy by a vertical line. Model 1 is too simple and assigns low probability to Dy. Model 3
also assigns Dy relatively low probability, because it can predict many data sets, and hence it
spreads its probability quite widely and thinly. Model 2 is “just right”: it predicts the observed
data with a reasonable degree of confidence, but does not predict too many other things. Hence
model 2 is the most probable model.

As a concrete example of the Bayesian Occam'’s razor, consider the data in Figure 5.7. We plot
polynomials of degrees 1, 2 and 3 fit to NV = 5 data points. It also shows the posterior over
models, where we use a Gaussian prior (see Section 7.6 for details). There is not enough data
to justify a complex model, so the MAP model is d = 1. Figure 5.8 shows what happens when
N = 30. Now it is clear that d = 2 is the right model (the data was in fact generated from a
quadratic).

As another example, Figure 7.8(c) plots log p(D|\) vs log(A), for the polynomial ridge regres-
sion model, where A ranges over the same set of values used in the CV experiment. We see
that the maximum evidence occurs at roughly the same point as the minimum of the test MSE,
which also corresponds to the point chosen by CV.

When using the Bayesian approach, we are not restricted to evaluating the evidence at a
finite grid of values. Instead, we can use numerical optimization to find * = argmax, p(D|\).
This technique is called empirical Bayes or type II maximum likelihood (see Section 5.6 for
details). An example is shown in Figure 7.8(b): we see that the curve has a similar shape to the
CV estimate, but it can be computed more efficiently.

5.3.2

158 Chapter 5. Bayesian statistics

d=1, logev=-18.593, EB d=2, logev=-20.218, EB
T T T T

70

80

(a) (b)

300

d=3, logev=-21.718, EB N=5, method=EB

250

200

150

100+

P(M|D)

-100+

-150

_200
-2 0 2 4 6 8 10 12

(© (d

Figure 5.7 (a-c) We plot polynomials of degrees 1, 2 and 3 fit to N = 5 data points using empirical
Bayes. The solid green curve is the true function, the dashed red curve is the prediction (dotted blue lines
represent +o around the mean). (d) We plot the posterior over models, p(d|D), assuming a uniform prior
p(d) 1. Based on a figure by Zoubin Ghahramani. Figure generated by linregEbModelSelVsN.

Computing the marginal likelihood (evidence)
When discussing parameter inference for a fixed model, we often wrote
p(8|D,m) o< p(8]m)p(D|6,m) (5.15)

thus ignoring the normalization constant p(D|m). This is valid since p(D|m) is constant wrt 6.
However, when comparing models, we need to know how to compute the marginal likelihood,
p(D|m). In general, this can be quite hard, since we have to integrate over all possible parameter
values, but when we have a conjugate prior, it is easy to compute, as we now show.

Let p(0) = ¢(0)/Zy be our prior, where ¢(0) is an unnormalized distribution, and Zj is
the normalization constant of the prior. Let p(D|@) = ¢(D|0)/Z; be the likelihood, where Z,
contains any constant factors in the likelihood. Finally let p(6|D) = ¢(6|D)/Zy be our poste-

5.3. Bayesian model selection 159

d=1, logev=-106.110, EB d=2, logev=-103.025, EB
T T T T T

70

80

701

(a)

100

d=3, logev=—107.410, EB N=30, method=EB

80

(© (d)

Figure 5.8 Same as Figure 5.7 except now N = 30. Figure generated by 1inregEbModelSelVsN.

rior, where ¢(0|D) = ¢(D|0)q(0) is the unnormalized posterior, and Z is the normalization
constant of the posterior. We have

p(0|D) = W (5.16)
q8|D) q(D|0)q(0)
AN - ZyZyp(D) o1
p(D) = ZZOZZ (5.18)

So assuming the relevant normalization constants are tractable, we have an easy way to compute
the marginal likelihood. We give some examples below.

5.3.2.1

5.3.2.2

5.3.2.3

160 Chapter 5. Bayesian statistics

Beta-binomial model

Let us apply the above result to the Beta-binomial model. Since we know p(6|D) = Beta(f|da’, '),
where @' = a + N; and V' = b+ Ny, we know the normalization constant of the posterior is
B(a',b"). Hence

pioID) = p(il{%};@) (5.19)
-]ﬁ [B(;b) 0ot (1 - 9)‘7‘1} Kﬁ) oM (1 — 9)N°} (5.20)
N (11\\7[1) zﬁ B(clz,b) [pr 7 (1 —)] 5.21)

So
B(a‘i’Nib‘i*No) - () @ b) (5.22)
p(D) = <) “*N;’z; No) .

The marginal likelihood for the Beta-Bernoulli model is the same as above, except it is missing
N

the (Nl) term.

Dirichlet-multinoulli model

By the same reasoning as the Beta-Bernoulli case, one can show that the marginal likelihood for
the Dirichlet-multinoulli model is given by

p(D)=B(]1;I(;:)® (5.24)
where
B(a) = Hk 1 Low) (5.25)

D>y o)

Hence we can rewrite the above result in the following form, which is what is usually presented
in the literature:

. F(Z Oé]g) F(Nk -+ ak)
p(D) = F(N+k2k) 1T (o) (5.26)

We will see many applications of this equation later.

Gaussian-Gaussian-Wishart model

Consider the case of an MVN with a conjugate NIW prior. Let Z; be the normalizer for the
prior, Zy be normalizer for the posterior, and let Z; = (2m)NP/2 be the normalizer for the

5.3.2.4

5.3. Bayesian model selection 161

likelihood. Then it is easy to see that

Z
p(D) = ZOZZ (5.27)
27 D/2 —vn/29(vo+N)D/2
11 (E) SN et IDET (1 /2)
~ ND/29ND/2 0\ D72 /2o D) (5.28)
() 180|722/ p (11 /2)
B 1 & D/2 |SO|V0/2 FD(VN/z) (529)
~ gND/2 KN ‘SN|VN/2 FD(VQ/Q) .

This equation will prove useful later.

BIC approximation to log marginal likelihood

In general, computing the integral in Equation 5.13 can be quite difficult. One simple but popular
approximation is known as the Bayesian information criterion or BIC, which has the following
form (Schwarz 1978):

dof()

BIC £ log p(D|6) — 5

log N ~ logp(D) (5.30)

where dof(8) is the number of degrees of freedom in the model, and @ is the MLE for the
model.2 We see that this has the form of a penalized log likelihood, where the penalty term
depends on the model’s complexity. See Section 8.4.2 for the derivation of the BIC score.

As an example, consider linear regression. As we show in Section 7.3, the MLE is given by w =
(XTX)"'XTy and 42 = RSS/N, where RSS = "V (y; — wZ,.x;)% The corresponding
log likelihood is given by

P N N
log p(D|0) = -5 log(2m62) — 5 (5.31)
Hence the BIC score is as follows (dropping constant terms)
N D
BIC = —— log(62) — 5 log(N) (5.32)

where D is the number of variables in the model. In the statistics literature, it is common to
use an alternative definition of BIC, which we call the BIC cost (since we want to minimize it):

BIC-cost £ —21log p(D|@) + dof(8) log N ~ —2log p(D) (5.33)
In the context of linear regression, this becomes

BIC-cost = N log(6?) + D log(N) (5.34)

2. Traditionally the BIC score is defined using the ML estimate , so it is independent of the prior. However, for models
such as mixtures of Gaussians, the ML estimate can be poorly behaved, so it is better to evaluate the BIC score using
the MAP estimate, as in (Fraley and Raftery 2007).

5.3.2.5

162 Chapter 5. Bayesian statistics

The BIC method is very closely related to the minimum description length or MDL principle,
which characterizes the score for a model in terms of how well it fits the data, minus how
complex the model is to define. See (Hansen and Yu 2001) for details.

There is a very similar expression to BIC/ MDL called the Akaike information criterion or
AIC, defined as

AIC(m, D) £ log p(D|0) — dof (m) (5.35)

This is derived from a frequentist framework, and cannot be interpreted as an approximation
to the marginal likelihood. Nevertheless, the form of this expression is very similar to BIC. We
see that the penalty for AIC is less than for BIC. This causes AIC to pick more complex models.
However, this can result in better predictive accuracy. See e.g., (Clarke et al. 2009, sec 10.2) for
further discussion on such information criteria.

Effect of the prior

Sometimes it is not clear how to set the prior. When we are performing posterior inference, the
details of the prior may not matter too much, since the likelihood often overwhelms the prior
anyway. But when computing the marginal likelihood, the prior plays a much more important
role, since we are averaging the likelihood over all possible parameter settings, as weighted by
the prior.

In Figures 5.7 and 5.8, where we demonstrated model selection for linear regression, we used
a prior of the form p(w) = A/(0,«~'I). Here « is a tuning parameter that controls how strong
the prior is. This parameter can have a large effect, as we discuss in Section 7.5. Intuitively, if
« is large, the weights are “forced” to be small, so we need to use a complex model with many
small parameters (e.g., a high degree polynomial) to fit the data. Conversely, if o is small, we
will favor simpler models, since each parameter is “allowed” to vary in magnitude by a lot.

If the prior is unknown, the correct Bayesian procedure is to put a prior on the prior. That is,
we should put a prior on the hyper-parameter v as well as the parametrs w. To compute the
marginal likelihood, we should integrate out all unknowns, i.e., we should compute

p(D|m) ://p(D|W)p(w\a,m)p(oz\m)dwda (5.36)

Of course, this requires specifying the hyper-prior. Fortunately, the higher up we go in the
Bayesian hierarchy, the less sensitive are the results to the prior settings. So we can usually
make the hyper-prior uninformative.

A computational shortcut is to optimize « rather than integrating it out. That is, we use

p(Dlm) ~ [p(DIw)p(se|a,m)dw 537
where
& = argmax p(D]a,m) = argmax/p(D|w)p(w|a, m)dw (5.38)

This approach is called empirical Bayes (EB), and is discussed in more detail in Section 5.6. This
is the method used in Figures 5.7 and 5.8.

5.3.3

5.3.3.1

5.3. Bayesian model selection 163

Bayes factor BF'(1,0) Interpretation
BF < ﬁ Decisive evidence for M
BF < 15 Strong evidence for M
%0 < BF < % Moderate evidence for M
% < BF <1 Weak evidence for M,
1< BF <3 Weak evidence for M,
3<BF <10 Moderate evidence for My
BF > 10 Strong evidence for M,
BF > 100 Decisive evidence for M

Table 5.1 Jeffreys’ scale of evidence for interpreting Bayes factors.

Bayes factors

Suppose our prior on models is uniform, p(m) o 1. Then model selection is equivalent to
picking the model with the highest marginal likelihood. Now suppose we just have two models
we are considering, call them the null hypothesis, M, and the alternative hypothesis, 1/;.
Define the Bayes factor as the ratio of marginal likelihoods:

s P(DIMy) _ p(My|D) p(My)

BF, o & = (5.39)
0= D)~ p(h(D) p(ido)

(This is like a likelihood ratio, except we integrate out the parameters, which allows us to
compare models of different complexity.) If BF} o > 1 then we prefer model 1, otherwise we
prefer model 0.

Of course, it might be that BF} is only slightly greater than 1. In that case, we are not
very confident that model 1 is better. Jeffreys (1961) proposed a scale of evidence for interpreting
the magnitude of a Bayes factor, which is shown in Table 5.1. This is a Bayesian alternative to
the frequentist concept of a p-value.® Alternatively, we can just convert the Bayes factor to a
posterior over models. If p(M;) = p(Mp) = 0.5, we have

BFy, 1

M,|D) = - 5.40
p(Mo|D) 1+ BFo: BFig+1 (5.40)

Example: Testing if a coin is fair

Suppose we observe some coin tosses, and want to decide if the data was generated by a fair
coin, # = 0.5, or a potentially biased coin, where 6 could be any value in [0, 1]. Let us denote
the first model by M and the second model by M;. The marginal likelihood under M| is
simply

1

p(D|Mo) = (2>N (5.41)

3. A p-value, is defined as the probability (under the null hypothesis) of observing some test statistic f(D) (such as the
chi-squared statistic) that is as large or larger than that actually observed, i.e., pvalue(D) £ P(f(D) > f(D)|D ~
Hy). Note that has almost nothing to do with what we really want to know, which is p(Hg|D).

5.3.4

164 Chapter 5. Bayesian statistics

\og|0 p(D|M1) BIC approximation to Iog‘0 p(D|M1)
-0.4 LI e e -2 LI s B B B
-2.05
-0.6
-2.1 | |
® ® | |
-08[f -2.15 | |
| | ‘\ |
b \“ “\ -2.2r “ “
\“ “‘ 225} | |
“12r | | “ “
| | 23t
| | | |
| | | |
14t | | -2.35 ‘ ‘
bocoe ceocd | |
\ [-24¢ | |
16} \ / 1 | “
\ / —2.45| & S
| |
“““ PO RRRERERED S S S A S S MR
-18 -25
01111122222222223333333333444445 01111122222222223333333333444445

(@) (b)

Figure 5.9 (a) Log marginal likelihood for the coins example. (b) BIC approximation. Figure generated by
coinsModelSelDemo.

where N is the number of coin tosses. The marginal likelihood under M7, using a Beta prior, is

B(a1 + N1, a9 + No)
D|M = D|0)p(6)do = 5.42
p(O) = [p(D)(6) e 542

We plot log p(D|M;) vs the number of heads N; in Figure 5.9(a), assuming N = 5 and
a1 = ag = 1. (The shape of the curve is not very sensitive to a; and «, as long as ag = ay.)
If we observe 2 or 3 heads, the unbiased coin hypothesis M is more likely than M7, since M
is a simpler model (it has no free parameters) — it would be a suspicious coincidence if the
coin were biased but happened to produce almost exactly 50/50 heads/tails. However, as the
counts become more extreme, we favor the biased coin hypothesis. Note that, if we plot the log
Bayes factor, log BF o, it will have exactly the same shape, since log p(D|My) is a constant.
See also Exercise 3.18.

In Figure 5.9(b) shows the BIC approximation to log p(D|Mj) for our biased coin example
from Section 5.3.3.1. We see that the curve has approximately the same shape as the exact log
marginal likelihood, which is all that matters for model selection purposes, since the absolute
scale is irrelevant. In particular, it favors the simpler model unless the data is overwhelmingly
in support of the more complex model.

Jeffreys-Lindley paradox *

Problems can arise when we use improper priors (i.e., priors that do not integrate to 1) for model
selection/ hypothesis testing, even though such priors may be acceptable for other purposes. For
example, consider testing the hypotheses My : 6 € ©¢ vs M; : 0 € O4. To define the marginal
density on 6, we use the following mixture model

p(0) = p(0|Mo)p(Mo) + p(0|My)p(My) (5.43)

5.4

5.4.1

5.4. Priors 165

This is only meaningful if p(6|My) and p(6|M;) are proper (normalized) density functions. In
this case, the posterior is given by
p(Mo)p(D|Mo)
p(Mo|D) = (5.44)
I = 0)p(DIMy) + (31 (D)

p(Mo) Jo, P(D|0)p(0]Mo)dd

= (5.45)
p(Mo) [o, P(DI0)p(8]Mo)d6 + p(Mn) [, p(D|0)p(0]M:1)do
Now suppose we use improper priors, p(6|Mp) o ¢o and p(6|M7) x ¢1. Then
p(Mo)co [, p(D]6)d6
My|D (5.46)
PIMIP) = e [y, p(DI0)d0 + p(Mr)er [p(DI6)d6

M,

p(Mo)colo (5.47)

p(Mo)colo + p(My)erty
where ¢; = f@ (D|6)d0 is the integrated or marginal likelihood for model i. Now let p(My) =
p(M7) = 5. Hence

COKO 60
MDY — _ (5.48)
P(MolD) colo +crly Lo+ (c1/co)lr

Thus we can change the posterior arbitrarily by choosing ¢; and ¢y as we please. Note that
using proper, but very vague, priors can cause similar problems. In particular, the Bayes factor
will always favor the simpler model, since the probability of the observed data under a complex
model with a very diffuse prior will be very small. This is called the Jeffreys-Lindley paradox.

Thus it is important to use proper priors when performing model selection. Note, however,
that, if My and M; share the same prior over a subset of the parameters, this part of the prior
can be improper, since the corresponding normalization constant will cancel out.

Priors

The most controversial aspect of Bayesian statistics is its reliance on priors. Bayesians argue
this is unavoidable, since nobody is a tabula rasa or blank slate: all inference must be done
conditional on certain assumptions about the world. Nevertheless, one might be interested in
minimizing the impact of one’s prior assumptions. We briefly discuss some ways to do this
below.

Uninformative priors

If we don't have strong beliefs about what 6 should be, it is common to use an uninformative
or non-informative prior, and to “let the data speak for itself”.

The issue of designing uninformative priors is actually somewhat tricky. As an example
of the difficulty, consider a Bernoulli parameter, § € [0,1]. One might think that the most
uninformative prior would be the uniform distribution, Beta(l 1). But the posterior mean in
this case is E [0|D] = 1\/11117;/:]14-2' whereas the MLE is &5~ + 'y Hence one could argue that the
prior wasn't completely uninformative after all.

5.4.2

166 Chapter 5. Bayesian statistics

Clearly by decreasing the magnitude of the pseudo counts, we can lessen the impact of the
prior. By the above argument, the most non-informative prior is

lin(l) Beta(c, ¢) = Beta(0,0) (5.49)
c—

which is a mixture of two equal point masses at 0 and 1 (see (Zhu and Lu 2004)). This is also
called the Haldane prior. Note that the Haldane prior is an improper prior, meaning it does not
integrate to 1. However, as long as we see at least one head and at least one tail, the posterior
will be proper.

In Section 5.4.2.1 we will argue that the “right” uninformative prior is in fact Beta(%, %)
Clearly the difference in practice between these three priors is very likely negligible. In general,
it is advisable to perform some kind of sensitivity analysis, in which one checks how much
one’s conclusions or predictions change in response to change in the modeling assumptions,
which includes the choice of prior, but also the choice of likelihood and any kind of data pre-
processing. If the conclusions are relatively insensitive to the modeling assumptions, one can
have more confidence in the results.

Jeffreys priors *

Harold Jeffreys* designed a general purpose technique for creating non-informative priors. The
result is known as the Jeffreys prior. The key observation is that if p(¢) is non-informative,
then any re-parameterization of the prior, such as 6 = h(¢) for some function h, should also
be non-informative. Now, by the change of variables formula,

do
6) = - 5.50
po(0) = po(@)| 25 (5.50)
so the prior will in general change. However, let us pick
Po(9) ox (1(0))* 65D
where I(¢) is the Fisher information:
I(¢) = -E Kdlogg;X@) 2} (5.52)

This is a measure of curvature of the expected negative log likelihood and hence a measure of
stability of the MLE (see Section 6.2.2). Now

dlogp(z|0) dlogp(z|¢) do
—& - b (5.53)

Squaring and taking expectations over z, we have

10) = -E (dloggng) 1 = I(¢) (fl‘g) (5.54)
10 = I(¢)%\%I (5.55)

4. Harold Jeffreys, 1891 - 1989, was an English mathematician, statistician, geophysicist, and astronomer.

5.4.2.1

5.4.2.2

5.4. Priors 167

so we find the transformed prior is

polh) = po(@)| S| o (1))} [2| = 1(6) 556

So pp(6) and p,(¢) are the same.
Some examples will make this clearer.

Example: Jeffreys prior for the Bernoulli and multinoulli
Suppose X ~ Ber(6). The log likelihood for a single sample is
log p(X16) = Xlog6 + (1 — X)log(1l —6) (5.57)

The score function is just the gradient of the log-likelihood:

d X 1-X
s(0) = Zplogp(X|0) = 2 — T—5 (5.58)

The observed information is the second derivative of the log-likelihood:

J(O) = —j—;logp(XW) =—5'(0|X) = ;(7 + % (5.59)
The Fisher information is the expected information:
I(0) = E[JOIX)|X ~0]= ;% + (11_ 52 = 0(11_9) (5.60)
Hence Jeffreys’ prior is
_1 _1 1 11
p(f) x672(1—-0)"2 = m x Beta(i, 5) (5.61)

Now consider a multinoulli random variable with K states. One can show that the Jeffreys’
prior is given by

1 1
0 Dir(=,..., = 3.62
p(8) x Dir(5, ..., 5) (5.62)
Note that this is different from the more obvious choices of Dir(+, ..., %) or Dir(1,...,1).

Example: Jeffreys prior for location and scale parameters

One can show that the Jeffreys prior for a location parameter, such as the Gaussian mean, is
p(p) o< 1. Thus is an example of a translation invariant prior, which satisfies the property
that the probability mass assigned to any interval, [A, B] is the same as that assigned to any
other shifted interval of the same width, such as [A — ¢, B — ¢]. That is,

B

[v 4= - -0 = -8 = [s 5.6
A—c A

5.4.3

5.4.4

168 Chapter 5. Bayesian statistics

This can be achieved using p(u) o 1, which we can approximate by using a Gaussian with
infinite variance, p(u) = N(u|0,00). Note that this is an improper prior, since it does not
integrate to 1. Using improper priors is fine as long as the posterior is proper, which will be the
case provided we have seen N > 1 data points, since we can “nail down” the location as soon
as we have seen a single data point.

Similarly, one can show that the Jeffreys prior for a scale parameter, such as the Gaussian
variance, is p(0?) oc 1/02. This is an example of a scale invariant prior, which satisfies the
property that the probability mass assigned to any interval [A4, B] is the same as that assigned
to any other interval [A/c, B/c] which is scaled in size by some constant factor ¢ > 0. (For
example, if we change units from meters to feet we do not want that to affect our inferences.)
This can be achieved by using

p(s) o< 1/s (5.64)
To see this, note that
BJc
/ p(s)ds = [logs]Z/C = log(B/c) — log(4/c) (5.65)
Ale
B
= log(B) —log(A) :/ p(s)ds (5.66)
A

We can approximate this using a degenerate Gamma distribution (Section 2.4.4), p(s) = Ga(s|0, 0).
The prior p(s) o 1/s is also improper, but the posterior is proper as soon as we have seen
N > 2 data points (since we need at least two data points to estimate a variance).

Robust priors

In many cases, we are not very confident in our prior, so we want to make sure it does not have
an undue influence on the result. This can be done by using robust priors (Insua and Ruggeri
2000), which typically have heavy tails, which avoids forcing things to be too close to the prior
mean.

Let us consider an example from (Berger 1985, p7). Suppose © ~ N(f,1). We observe that
x = 5 and we want to estimate 6. The MLE is of course f = 5, which seems reasonable. The
posterior mean under a uniform prior is also § = 5. But now suppose we know that the prior
median is 0, and the prior quantiles are at -1 and 1, so p(f < —1) = p(—1 < 6 <0) =p(0 <
0 <1)=p(l <0)=0.25. Let us also assume the prior is smooth and unimodal.

It is easy to show that a Gaussian prior of the form A/(0|0,2.19%) satisfies these prior
constraints. But in this case the posterior mean is given by 3.43, which doesn’t seem very
satisfactory.

Now suppose we use as a Cauchy prior 7 (00, 1, 1). This also satisfies the prior constraints of
our example. But this time we find (using numerical method integration: see robustPriorDemo
for the code) that the posterior mean is about 4.6, which seems much more reasonable.

Mixtures of conjugate priors

Robust priors are useful, but can be computationally expensive to use. Conjugate priors simplify
the computation, but are often not robust, and not flexible enough to encode our prior knowl-

5.4.4.1

5.4. Priors 169

edge. However, it turns out that a mixture of conjugate priors is also conjugate (Exercise 5.1),
and can approximate any kind of prior (Dallal and Hall 1983; Diaconis and Ylvisaker 1985). Thus
such priors provide a good compromise between computational convenience and flexibility.

For example, suppose we are modeling coin tosses, and we think the coin is either fair, or
is biased towards heads. This cannot be represented by a beta distribution. However, we can
model it using a mixture of two beta distributions. For example, we might use

p(6) = 0.5 Beta(0]20,20) + 0.5 Beta(6]30, 10) (5.67)

If 0 comes from the first distribution, the coin is fair, but if it comes from the second, it is
biased towards heads.

We can represent a mixture by introducing a latent indicator variable z, where z = k£ means
that 6 comes from mixture component k. The prior has the form

p(0) = p(z = k)p(6]z = k) (5.68)
k

where each p(6|z = k) is conjugate, and p(z = k) are called the (prior) mixing weights. One can
show (Exercise 5.1) that the posterior can also be written as a mixture of conjugate distributions
as follows:

p(0D) = Y p(z=kID)p(6|D,z = k) (5.69)
k
where p(Z = k|D) are the posterior mixing weights given by
p(Z = k)p(D|Z = k)
> P(Z =K)p(D|Z = k)

Here the quantity p(D|Z = k) is the marginal likelihood for mixture component k (see Sec-
tion 5.3.2.1).

p(Z = k|D) (5.70)

Example

Suppose we use the mixture prior
p(0) = 0.5Beta(f]ay, by) + 0.5Beta(f|az, bs) (5.71)

where a; = by = 20 and ay = by = 10. and we observe N7 heads and N tails. The posterior
becomes

p(9|D) = p(Z = 1|D)Beta(9|a1 +]\]17 b1 + No) +p(Z = 2|D)Beta(0\a2 + Nl, bg + No)(572)
If Ny = 20 heads and Ny = 10 tails, then, using Equation 5.23, the posterior becomes
p(0]D) = 0.346 Beta(6]40, 30) + 0.654 Beta(6]50, 20) (5.73)

See Figure 5.10 for an illustration.

5.4.4.2

170 Chapter 5. Bayesian statistics

mixture of Beta distributions

— = prior
—— posterior

Figure 5.10 A mixture of two Beta distributions. Figure generated by mixBetaDemo.

Application: Finding conserved regions in DNA and protein sequences

We mentioned that Dirichlet-multinomial models are widely used in biosequence analysis. Let
us give a simple example to illustrate some of the machinery that has developed. Specifically,
consider the sequence logo discussed in Section 2.3.2.1. Now suppose we want to find locations
which represent coding regions of the genome. Such locations often have the same letter across
all sequences, because of evolutionary pressure. So we need to find columns which are “pure”,
or nearly so, in the sense that they are mostly all As, mostly all Ts, mostly all Cs, or mostly all
Gs. One approach is to look for low-entropy columns; these will be ones whose distribution is
nearly deterministic (pure).

But suppose we want to associate a confidence measure with our estimates of purity. This
can be useful if we believe adjacent locations are conserved together. In this case, we can let
Zy =1 if location ¢ is conserved, and let Z; = 0 otherwise. We can then add a dependence
between adjacent Z; variables using a Markov chain; see Chapter 17 for details.

In any case, we need to define a likelihood model, p(IN;|Z;), where N, is the vector of
(A,C,G,T) counts for column ¢. It is natural to make this be a multinomial distribution with
parameter 6;. Since each column has a different distribution, we will want to integrate out 6
and thus compute the marginal likelihood

p(N¢|Z;) = /p(Nt|0t)P(0t|Zt)d9t (5.74)

But what prior should we use for 8,2 When Z; = 0 we can use a uniform prior, p(6|Z; = 0) =
Dir(1,1,1, 1), but what should we use if Z, = 1? After all, if the column is conserved, it could
be a (nearly) pure column of As, Cs, Gs, or Ts. A natural approach is to use a mixture of Dirichlet
priors, each one of which is “tilted” towards the appropriate corner of the 4-dimensional simplex,

e.g.
1 1
p(6]Z; = 1) = {Dir(6](10,1,1,1)) + --- 4 7 Dix(6](1, 1,1,10)) (5.75)

Since this is conjugate, we can easily compute p(IN¢|Z;). See (Brown et al. 1993) for an

3.5

5.5.1

5.5. Hierarchical Bayes 171

application of these ideas to a real bio-sequence problem.

Hierarchical Bayes

A key requirement for computing the posterior p(6|D) is the specification of a prior p(0|n),
where 7 are the hyper-parameters. What if we don’t know how to set 7? In some cases, we can
use uninformative priors, we we discussed above. A more Bayesian approach is to put a prior on
our priors! In terms of graphical models (Chapter 10), we can represent the situation as follows:

n—60—D (5.76)

This is an example of a hierarchical Bayesian model, also called a multi-level model, since
there are multiple levels of unknown quantities. We give a simple example below, and we will
see many others later in the book.

Example: modeling related cancer rates

Consider the problem of predicting cancer rates in various cities (this example is from (Johnson
and Albert 1999, p24)). In particular, suppose we measure the number of people in various
cities, N;, and the number of people who died of cancer in these cities, z;. We assume
x; ~ Bin(V;, 0;), and we want to estimate the cancer rates 6;. One approach is to estimate
them all separately, but this will suffer from the sparse data problem (underestimation of the
rate of cancer due to small V;). Another approach is to assume all the #; are the same; this is

called parameter tying. The resulting pooled MLE is just § = %77; But the assumption that

all the cities have the same rate is a rather strong one. A compromise approach is to assume
that the 6; are similar, but that there may be city-specific variations. This can be modeled by
assuming the 6; are drawn from some common distribution, say 0; ~ Beta(a, b). The full joint
distribution can be written as

N
p(D,6,nN) = p(n)][] Bin(zi|N;, 6:)Beta(6i[n) (5.77)

i=1

where 1 = (a,b).

Note that it is crucial that we infer 7 = (a,b) from the data; if we just clamp it to a constant,
the 6; will be conditionally independent, and there will be no information flow between them.
By contrast, by treating 17 as an unknown (hidden variable), we allow the data-poor cities to
borrow statistical strength from data-rich ones.

Suppose we compute the joint posterior p(n,8|D). From this we can get the posterior
marginals p(6;|D). In Figure 5.11(a), we plot the posterior means, E [0;|D], as blue bars, as well
as the population level mean, E [a/(a + b)|D], shown as a red line (this represents the average
of the 6;’s). We see that the posterior mean is shrunk towards the pooled estimate more strongly
for cities with small sample sizes IN;. For example, city 1 and city 20 both have a 0 observed
cancer incidence rate, but city 20 has a smaller population, so its rate is shrunk more towards
the population-level estimate (i.e., it is closer to the horizontal red line) than city 1.

Figure 5.11(b) shows the 95% posterior credible intervals for 6;. We see that city 15, which has
a very large population (53,637 people), has small posterior uncertainty. Consequently this city

5.6

172 Chapter 5. Bayesian statistics

95% credible interval on theta, *=median
number of people with cancer (truncated at 5) 200 *

5 T T T
I I I L] —
e
0
5

20 25

10 15
pop of city (truncated at 2000)

1000 ol
0 I—
0 5 10 15 20 25 10f
MLE*1000 (red line=pooled MLE)
10 - - - -
8f —————
5}‘ —
| L B or
0 —_—
0 5 10 15 20 25
posterior mean*1000 (red line=pop mean) P e —
4 - - - - —
L,
: ﬁl]lﬂlﬁlli_“ .
e
° 0 , , ,
0 5 10 15 20 25 0 1 2 3 4 5 6 7 8
3

Figure 5.11 (a) Results of fitting the model using the data from (Johnson and Albert 1999, p24). First
row: Number of cancer incidents x; in 20 cities in Missouri. Second row: population size N;. The largest
city (number 15) has a population of N15 = 53637 and 215 = 54 incidents, but we truncate the vertical
axes of the first two rows so that the differences between the other cities are visible. Third row: MLE ;.
The red line is the pooled MLE. Fourth row: posterior mean E [0;|D]. The red line is E [a/(a + b)|D],
the population-level mean. (b) Posterior 95% credible intervals on the cancer rates. Figure generated by
cancerRatesEb

has the largest impact on the posterior estimate of 7, which in turn will impact the estimate of
the cancer rates for other cities. Cities 10 and 19, which have the highest MLE, also have the
highest posterior uncertainty, reflecting the fact that such a high estimate is in conflict with the
prior (which is estimated from all the other cities).

In the above example, we have one parameter per city, modeling the probability the response
is on. By making the Bernoulli rate parameter be a function of covariates, 6; = sigm(w? x), we
can model multiple correlated logistic regression tasks. This is called multi-task learning, and

will be discussed in more detail in Section 9.5.

Empirical Bayes

In hierarchical Bayesian models, we need to compute the posterior on multiple levels of latent
variables. For example, in a two-level model, we need to compute

p(n,0|D) o< p(D|60)p(6|n)p(n) (5.78)

In some cases, we can analytically marginalize out 6; this leaves is with the simpler problem of
just computing p(n|D).

As a computational shortcut, we can approximate the posterior on the hyper-parameters with
a point-estimate, p(n|D) ~ 0;(n), where 7 = argmaxp(n|D). Since 7 is typically much
smaller than @ in dimensionality, it is less prone to overfitting, so we can safely use a uniform
prior on 7. Then the estimate becomes

7) = argmax p(D|n) = argmax {/p(’l)|0)p(0|n)d0] (5.79)

5.6.1

5.6.2

5.6. Empirical Bayes 173

where the quantity inside the brackets is the marginal or integrated likelihood, sometimes called
the evidence. This overall approach is called empirical Bayes (EB) or type-II maximum
likelihood. In machine learning, it is sometimes called the evidence procedure.

Empirical Bayes violates the principle that the prior should be chosen independently of the
data. However, we can just view it as a computationally cheap approximation to inference in a
hierarchical Bayesian model, just as we viewed MAP estimation as an approximation to inference
in the one level model @ — D. In fact, we can construct a hierarchy in which the more integrals
one performs, the “more Bayesian” one becomes:

Method Definition

Maximum likelihood 6 = argmaxg p(D|0)

MAP estimation 6 = argmax, p(D|0)p(0|n)

ML (Bmpirical Bayes)) = argmax,, [p(D|6)p(8|n)d6 = argmax,, p(D|n)

MAP-II 71 = argmax,, [p(D|0)p(0|n)p(n)dl = argmax,, p(D|n)p(n)
Full Bayes p(6,n|D) o< p(D|0)p(0]n)p(n)

Note that EB can be shown to have good frequentist properties (see e.g., (Carlin and Louis
1996; Efron 2010)), so it is widely used by non-Bayesians. For example, the popular James-Stein
estimator, discussed in Section 6.3.3.2, can be derived using EB.

Example: beta-binomial model

Let us return to the cancer rates model. We can analytically integrate out the 6;’s, and write
down the marginal likelihood directly, as follows:

(Do) =] / Bin(a;| N, 0:)Beta(0; a, b)df; 5.80)

. HB(a-i-l‘i,b—f—Ni—l‘i)

Bla,b) (5.81)

7
Various ways of maximizing this wrt a and b are discussed in (Minka 2000e).

Having estimated a and b, we can plug in the hyper-parameters to compute the posterior
p(6;|a,b, D) in the usual way, using conjugate analysis. The net result is that the posterior
mean of each 6; is a weighted average of its local MLE and the prior means, which depends on
1 = (a,b); but since 1 is estimated based on all the data, each 6; is influenced by all the data.

Example: Gaussian-Gaussian model

We now study another example that is analogous to the cancer rates example, except the data is
real-valued. We will use a Gaussian likelihood and a Gaussian prior. This will allow us to write
down the solution analytically.

In particular, suppose we have data from multiple related groups. For example, x;; could be
the test score for student 4 in school j, for j = 1: D and ¢ = 1 : N;. We want to estimate
the mean score for each school, 6;. However, since the sample size, N;, may be small for

5.6.2.1

174 Chapter 5. Bayesian statistics

some schools, we can regularize the problem by using a hierarchical Bayesian model, where we
assume 6; come from a common prior, N (u, 72).
The joint distribution has the following form:

D N;
p(0,Dln,0%) = [[N@;ln.) [[N (@105, 07) (5.82)
j=1 i=1

where we assume o2 is known for simplicity. (We relax this assumption in Exercise 24.4.) We
explain how to estimate 17 below. Once we have estimated 7 = (i, 7), we can compute the
posteriors over the 6;’s. To do that, it simplifies matters to rewrite the joint distribution in the
following form, exploiting the fact that N; Gaussian measurements with values x;; and variance
o? are equivalent to one measurement of value 7; = N% 25\21 x;; with variance 0% £ 2 /N;.
This yields

D
p(6,Dlf, o) = [[N (0514, 7N (105, 07) (5.83)

Jj=1

From this, it follows from the results of Section 4.4.1 that the posteriors are given by

p(0;|D, i, 7%) = N(0;|Bjfi+ (1 — B;j)z;, (1 — Bj)o?) (5.84)
2
N g~
B, & 1 .
TT e (.85

where /i = T and 72 will be defined below.

The quantity 0 < B]- < 1 controls the degree of shrinkage towards the overall mean, . If
the data is reliable for group j (e.g., because the sample size N; is large), then (TJZ will be small
relative to 72; hence Bj will be small, and we will put more weight on Z; when we estimate 6;.
However, groups with small sample sizes will get regularized (shrunk towards the overall mean
1) more heavily. We will see an example of this below.

If o; = o for all groups j, the posterior mean becomes

0, = Bz+(1-B)z; =7+ (1-B)T; —T) (5.86)

This has exactly the same form as the James Stein estimator discussed in Section 6.3.3.2.

Example: predicting baseball scores

We now give an example of shrinkage applied to baseball batting averages, from (Efron and
Morris 1975). We observe the number of hits for D = 18 players during the first 7' = 45 games.
Call the number of hits b;. We assume b; ~ Bin(T’,6;), where 60, is the “true” batting average
for player j. The goal is to estimate the 6;. The MLE is of course éj = xj, where z; = b; /T is
the empirical batting average. However, we can use an EB approach to do better.

To apply the Gaussian shrinkage approach described above, we require that the likelihood be
Gaussian, z; ~ N(6;,0?) for known 2. (We drop the i subscript since we assume N; = 1,

5.6.2.2

5.6. Empirical Bayes 175

MLE (top) and shrinkage estimates (bottom) MSE MLE = 0.0042, MSE shrunk = 0.0013

3
player number

(@) (b)

Figure 5.12 (a) MLE parameters (top) and corresponding shrunken estimates (bottom). (b) We plot the
true parameters (blue), the posterior mean estimate (green), and the MLEs (red) for 5 of the players. Figure
generated by shrinkageDemoBaseball.

since x; already represents the average for player j.) However, in this example we have a
binomial likelihood. While this has the right mean, E [z;] = 6}, the variance is not constant:

1 T6,;(1—6;
var [z,] = 73 var b] = ———— (T2 s)
So let us apply a variance stabilizing transform® to x; to better match the Gaussian assump-
tion:

y; = fy;) = \/Tarcsin(Qyj -1) (5.88)

Now we have approximately y; ~ N(f(6;),1) = N(p;,1). We use Gaussian shrinkage to
estimate the y; using Equation 5.86 with o = 1, and we then transform back to get

0; = 0.5(sin(j1;/VT) + 1) (5.89)

(5.87)

The results are shown in Figure 5.12(a-b). In (a), we plot the MLE éj and the posterior mean @J-,
We see that all the estimates have shrunk towards the global mean, 0.265. In (b), we plot the
true value 6;, the MLE éj and the posterior mean 6;. (The “true” values of 6; are estimated
from a large number of independent games.) We see that, on average, the shrunken estimate
is much closer to the true parameters than the MLE is. Specifically, the mean squared error,
defined by MSE = + Zle(Hj —0,)2, is over three times smaller using the shrinkage estimates

@, than using the MLEs 6.

Estimating the hyper-parameters

In this section, we give an algorithm for estimating 7. Suppose initially that sz = o2 is the
same for all groups. In this case, we can derive the EB estimate in closed form, as we now show.
From Equation 4.126, we have

p(Tilp, 7, 0%) = //\/(Eﬂ@j, o N (0|1, 72)d0; = N (Tj|p, 7° + 2) (5.90)

5. Suppose E[X] = p and var [X] = o2(u). Let Y = f(X). Then a Taylor series expansions gives Y =2
F(p) + (X — p) f'(u). Hence var [Y] =~ f'(u)?var [X — u] = f'(u)20?(u). A variance stabilizing transformation
is a function f such that f’(u)202(p) is independent of .

5.7

176 Chapter 5. Bayesian statistics

Hence the marginal likelihood is

D
p(Dlpu, 7%, 0%) = [[N@;ln. 7 + 0?) (5.91)
j=1

Thus we can estimate the hyper-parameters using the usual MLEs for a Gaussian. For p, we
have

1 _
fi = Bzxj =7 (5.92)

which is the overall mean.
For the variance, we can use moment matching (which is equivalent to the MLE for a
Gaussian): we simply equate the model variance to the empirical variance:

D
1
2 2 _ L = 24 2
#2402 = DZ(:EJ)22 (5.93)
J=1
so 72 = s2 — g2, Since we know 72 must be positive, it is common to use the following revised
estimate:
72 = max{0, s* — 0%} = (s* — 0?) (5.94)

Hence the shrinkage factor is

o? o?

B = = 5.95
o2 +72 o024 (s2—02), (.99

In the case where the UJQ-’S are different, we can no longer derive a solution in closed form.
Exercise 1113 discusses how to use the EM algorithm to derive an EB estimate, and Exercise 24.4
discusses how to perform full Bayesian inference in this hierarchical model.

Bayesian decision theory

We have seen how probability theory can be used to represent and updates our beliefs about
the state of the world. However, ultimately our goal is to convert our beliefs into actions. In this
section, we discuss the optimal way to do this.

We can formalize any given statistical decision problem as a game against nature (as opposed
to a game against other strategic players, which is the topic of game theory, see e.g., (Shoham
and Leyton-Brown 2009) for details). In this game, nature picks a state or parameter or label,
y € Y, unknown to us, and then generates an observation, x € X, which we get to see. We
then have to make a decision, that is, we have to choose an action a from some action space
A. Finally we incur some loss, L(y,a), which measures how compatible our action a is with
nature’s hidden state y. For example, we might use misclassification loss, L(y,a) = I(y # a),
or squared loss, L(y,a) = (y — a)?. We will see some other examples below.

5.7.1

5.7.11

5.7. Bayesian decision theory 177

Our goal is to devise a decision procedure or policy, § : X — A, which specifies the
optimal action for each possible input. By optimal, we mean the action that minimizes the
expected loss:

d(x) = argminE [L(y, a)] (5.96)
acA
In economics, it is more common to talk of a utility function; this is just negative loss,
U(y,a) = —L(y, a). Thus the above rule becomes

d(x) = argmax E [U(y, a)] (5.97)
acA
This is called the maximum expected utility principle, and is the essence of what we mean
by rational behavior.

Note that there are two different interpretations of what we mean by “expected”. In the
Bayesian version, which we discuss below, we mean the expected value of y given the data we
have seen so far. In the frequentist version, which we discuss in Section 6.3, we mean the
expected value of y and x that we expect to see in the future.

In the Bayesian approach to decision theory, the optimal action, having observed x, is defined
as the action a that minimizes the posterior expected loss:

plalx) = Epgypx) [L ZL y, a)p(y|x) (5.98)

(If y is continuous (e.g., when we want to estimate a parameter vector), we should replace the
sum with an integral.) Hence the Bayes estimator, also called the Bayes decision rule, is given

by

i(x) = arg 5%1;1 plalx) (5.99)

Bayes estimators for common loss functions

In this section we show how to construct Bayes estimators for the loss functions most commonly
arising in machine learning.

MAP estimate minimizes 0-1 loss
The 0-1 loss is defined by

0 ifa—
L(y,a) =1(y # a) ={ | ifarty (5.100)

This is commonly used in classification problems where y is the true class label and a = 7 is
the estimate.
For example, in the two class case, we can write the loss matrix as follows:
| g=1 §=0
y=1 0 1
y=0 1 0

5.7.1.2

178 Chapter 5. Bayesian statistics

1.0
threshold Jr===r=s=s==r=r=ee)rermemere o

0.0

Reject
Region

Figure 5.13 For some regions of input space, where the class posteriors are uncertain, we may prefer not
to choose class 1 or 2; instead we may prefer the reject option. Based on Figure 1.26 of (Bishop 2006a).

(In Section 5.7.2, we generalize this loss function so it penalizes the two kinds of errors on
the off-diagonal differently.)
The posterior expected loss is

plalx) = pla # ylx) =1 - p(y|x) (5.101)
Hence the action that minimizes the expected loss is the posterior mode or MAP estimate

y*(x) = argmax p(y|x) (5.102)
yeY

Reject option

In classification problems where p(y|x) is very uncertain, we may prefer to choose a reject
action, in which we refuse to classify the example as any of the specified classes, and instead
say “don’t know”. Such ambiguous cases can be handled by e.g., a human expert. See Figure 5.13
for an illustration. This is useful in risk averse domains such as medicine and finance.

We can formalize the reject option as follows. Let choosing a = C + 1 correspond to
picking the reject action, and choosing a € {1,...,C} correspond to picking one of the classes.
Suppose we define the loss function as

0 ifi=jandi,je{l,...,C}
Lly=j,a=1i)=1q A fi=C+1 (5.103)
As otherwise

where \,. is the cost of the reject action, and A4 is the cost of a substitution error. In Exercise 5.3,
you will show that the optimal action is to pick the reject action if the most probable class has
a probability below 1 — % ; otherwise you should just pick the most probable class.

5.7.1.3

5.7.1.4

5.7.1.5

5.7. Bayesian decision theory 179

(a) (b) (©

Figure 5.14 (a-c). Plots of the L(y,a) = |y — a|? vs |y — a| for ¢ = 0.2, ¢ = 1 and ¢ = 2. Figure
generated by lossFunctionFig.

Posterior mean minimizes £5 (quadratic) loss

For continuous parameters, a more appropriate loss function is squared error, /5 loss, or
quadratic loss, defined as

L(y,a) = (y — a)® (5.104)
The posterior expected loss is given by

plajx) = E[(y— a)2|x] =E [yQ\X} — 2aE [y|x] + a? (5.105)
Hence the optimal estimate is the posterior mean:

Sa(alx) = 2y +20=0 = §=Elylx| = [up(ulx)dy (5106)

This is often called the minimum mean squared error estimate or MMSE estimate.
In a linear regression problem, we have

p(ylx,0) = N (y|x"w,o?) (5.107)
In this case, the optimal estimate given some training data D is given by

E[y|x, D] = x'E [w|D] (5.108)
That is, we just plug-in the posterior mean parameter estimate. Note that this is the optimal
thing to do no matter what prior we use for w.
Posterior median minimizes £; (absolute) loss

The /5 loss penalizes deviations from the truth quadratically, and thus is sensitive to outliers. A
more robust alternative is the absolute or ¢; loss, L(y,a) = |y—al (see Figure 5.14). The optimal
estimate is the posterior median, i.e., a value a such that P(y < a|x) = P(y > a|x) = 0.5.
See Exercise 5.9 for a proof.

Supervised learning

Consider a prediction function ¢ : X —), and suppose we have some cost function £(y,y’)
which gives the cost of predicting 3y’ when the truth is 3. We can define the loss incurred by

5.7.2

5.7.2.1

180 Chapter 5. Bayesian statistics

taking action ¢ (i.e., using this predictor) when the unknown state of nature is @ (the parameters
of the data generating mechanism) as follows:

L(Oa 5) =]E(x,y)wp(x,y\e) V(y, 6(X)] = Z Z L(yv 5(X))p(X, y|0) (5.109)

This is known as the generalization error. Our goal is to minimize the posterior expected loss,
given by

p(0|D) = /p(0|D)L(0, 5)de (5.110)
This should be contrasted with the frequentist risk which is defined in Equation 6.47.

The false positive vs false negative tradeoff

In this section, we focus on binary decision problems, such as hypothesis testing, two-class
classification, object/ event detection, etc. There are two types of error we can make: a false
positive (aka false alarm), which arises when we estimate § = 1 but the truth is y = 0; or a
false negative (aka missed detection), which arises when we estimate ¢ = 0 but the truth is
y = 1. The 0-1 loss treats these two kinds of errors equivalently. However, we can consider the
following more general loss matrix:

y=1 0
y=0| Lrp 0
where Lpp is the cost of a false negative, and Lpp is the cost of a false positive. The
posterior expected loss for the two possible actions is given by

p(y=0|x) = Lpy p(y=1[x) (5.111)
p(§=1x) = Lpp py=0[x) (5.112)

Hence we should pick class § = 1 iff

p(g=0lx) > p(g=1x) (5.113)
p(y = 1]x) Lpp

_— 5.114
p(y = 0[x) Lrn 1)

If Lekny = cLpp, it is easy to show (Exercise 5.10) that we should pick § = 1 iff p(y =
11x)/p(y = 0]x) > 7, where 7 = ¢/(1 + ¢) (see also (Muller et al. 2004)). For example, if a
false negative costs twice as much as false positive, so ¢ = 2, then we use a decision threshold
of 2/3 before declaring a positive.

Below we discuss ROC curves, which provide a way to study the FP-FN tradeoff without having
to choose a specific threshold.

ROC curves and all that

Suppose we are solving a binary decision problem, such as classification, hypothesis testing,
object detection, etc. Also, assume we have a labeled data set, D = {(x;,y;)}. Let 6(x) =

5.7. Bayesian decision theory 181

Truth
1 0 by
. TP FP N, =TP+ FP
Estimate N
FN TN N_=FN+TN
> | Ny=TP+FN N_=FP+TN | N=TP+FP+FN+TN

Table 5.2 Quantities derivable from a confusion matrix. N, is the true number of positives, N is the
“called” number of positives, N_ is the true number of negatives, N_ is the “called” number of negatives.

y=1 y=20
1 | TP/N,=TPR=sensitivity=recall FP/N_=FPR=type I
0 | FN/N,=FNR=miss rate=type Il | T'N/N_=TNR=specifity

RS-

Table 5.3 Estimating p(g|y) from a confusion matrix. Abbreviations: FNR = false negative rate, FPR =
false positive rate, TNR = true negative rate, TPR = true positive rate.

I(f(x) > 7) be our decision rule, where f(x) is a measure of confidence that y = 1 (this
should be monotonically related to p(y = 1|x), but does not need to be a probability), and 7 is
some threshold parameter. For each given value of 7, we can apply our decision rule and count
the number of true positives, false positives, true negatives, and false negatives that occur, as
shown in Table 5.2. This table of errors is called a confusion matrix.

From this table, we can compute the true positive rate (TPR), also known as the sensitivity,
recall or hit rate, by using TPR = TP/N, ~ p(y = 1|y = 1). We can also compute the
false positive rate (FPR), also called the false alarm rate, or the type I error rate, by using
FPR = FP/N_ ~ p(§ = 1|y = 0). These and other definitions are summarized in Tables 5.3
and 5.4. We can combine these errors in any way we choose to compute a loss function.

However, rather than than computing the TPR and FPR for a fixed threshold 7, we can run
our detector for a set of thresholds, and then plot the TPR vs FPR as an implicit function of
7. This is called a receiver operating characteristic or ROC curve. See Figure 5.15(a) for an
example. Any system can achieve the point on the bottom left, (FPR = 0,TPR = 0), by
setting 7 = 1 and thus classifying everything as negative; similarly any system can achieve the
point on the top right, (FPR = 1,TPR = 1), by setting 7 = 0 and thus classifying everything
as positive. If a system is performing at chance level, then we can achieve any point on the
diagonal line TPR = F PR by choosing an appropriate threshold. A system that perfectly
separates the positives from negatives has a threshold that can achieve the top left corner,
(FPR = 0,TPR = 1); by varying the threshold such a system will “hug” the left axis and
then the top axis, as shown in Figure 5.15(a).

The quality of a ROC curve is often summarized as a single number using the area under the
curve or AUC. Higher AUC scores are better; the maximum is obviously 1. Another summary
statistic that is used is the equal error rate or EER, also called the cross over rate, defined
as the value which satisfies PR = FNR. Since FNR = 1 — TPR, we can compute the
EER by drawing a line from the top left to the bottom right and seeing where it intersects the
ROC curve (see points A and B in Figure 5.15(a)). Lower EER scores are better; the minimum is
obviously 0.

5.7.2.2

182 Chapter 5. Bayesian statistics
|||\||

0 0 1
for recall

(@) (b)

tor
precision

Figure 5.15 (a) ROC curves for two hypothetical classification systems. A is better than B. We plot the
true positive rate (TPR) vs the false positive rate (FPR) as we vary the threshold 7. We also indicate the
equal error rate (EER) with the red and blue dots, and the area under the curve (AUC) for classifier B. (b)
A precision-recall curve for two hypothetical classification systems. A is better than B. Figure generated by
PRhand.

y=1 y=20
g =1 | TP/N,=precision=PPV | F'P/N,=FDP
g=0 FN/N_ TN/N_=NPV

Table 5.4 Estimating p(y|J) from a confusion matrix. Abbreviations: FDP = false discovery probability,
NPV = negative predictive value, PPV = positive predictive value,

Precision recall curves

When trying to detect a rare event (such as retrieving a relevant document or finding a face
in an image), the number of negatives is very large. Hence comparing TPR = TP/N, to
FPR = FP/N_ is not very informative, since the FPR will be very small. Hence all the
“action” in the ROC curve will occur on the extreme left. In such cases, it is common to plot
the TPR versus the number of false positives, rather than vs the false positive rate.

However, in some cases, the very notion of “negative” is not well-defined. For example, when
detecting objects in images (see Section 1.2.1.3), if the detector works by classifying patches, then
the number of patches examined — and hence the number of true negatives — is a parameter
of the algorithm, not part of the problem definition. So we would like to use a measure that
only talks about positives.

The precision is defined as TP/N, = p(y = 1§ = 1) and the recall is defined as
TP/N, = p(§ = 1|y = 1). Precision measures what fraction of our detections are actually
positive, and recall measures what fraction of the positives we actually detected. If 3; € {0,1}
is the predicted label, and y; € {0,1} is the true label, we can estimate precision and recall
using
> Yili n_ > Yili

Zi Ui 7 Zz Yi
A precision recall curve is a plot of precision vs recall as we vary the threshold 7. See

Figure 5.15(b). Hugging the top right is the best one can do.
This curve can be summarized as a single number using the mean precision (averaging over

p— (5.115)

5.7.2.3

5.7. Bayesian decision theory 183

Class 1 Class 2 Pooled

y=1 y=0 y=1 y=0 y=1 y=0
g=1 10 10 g=1 90 10 g=1 100 20
7=0 10 970 =0 10 890 7=0 20 1860

Table 5.5 Illustration of the difference between macro- and micro-averaging. v is the true label, and g
is the called label. In this example, the macro-averaged precision is [10/(10 + 10) 4+ 90/(10 + 90)]/2 =
(0.5 4 0.9)/2 = 0.7. The micro-averaged precision is 100/(100 + 20) =~ 0.83. Based on Table 13.7 of
(Manning et al. 2008).

recall values), which approximates the area under the curve. Alternatively, one can quote the
precision for a fixed recall level, such as the precision of the first K = 10 entities recalled.
This is called the average precision at K score. This measure is widely used when evaluating
information retrieval systems.

F-scores *

For a fixed threshold, one can compute a single precision and recall value. These are often
combined into a single statistic called the F score, or F1 score, which is the harmonic mean of
precision and recall:

2 2PR

F 2 = 5.116
'""1/P+1/R R+P (-6
Using Equation 5.115, we can write this as
25N vl
P = — 22 Ui (5.117)

N N -
dima Vit i Ui

This is a widely used measure in information retrieval systems.

To understand why we use the harmonic mean instead of the arithmetic mean, (P + R)/2,
consider the following scenario. Suppose we recall all entries, so R = 1. The precision will be
given by the prevalence, p(y = 1). Suppose the prevalence is low, say p(y = 1) = 10~%. The
arithmetic mean of P and R is given by (P + R)/2 = (10=* + 1) /2 ~ 50%. By contrast, the

harmonic mean of this strategy is only %&ifl ~ 0.2%.

In the multi-class case (e.g., for document classification problems), there are two ways to
generalize I scores. The first is called macro-averaged Fl, and is defined as 25:1 Fi(e)/C,
where Fi(c) is the F; score obtained on the task of distinguishing class ¢ from all the others.
The other is called micro-averaged Fl, and is defined as the F} score where we pool all the
counts from each class’s contingency table.

Table 5.5 gives a worked example that illustrates the difference. We see that the precision of
class 1 is 0.5, and of class 2 is 0.9. The macro-averaged precision is therefore 0.7, whereas the
micro-averaged precision is 0.83. The latter is much closer to the precision of class 2 than to
the precision of class 1, since class 2 is five times larger than class 1. To give equal weight to
each class, use macro-averaging.

5.7.2.4

5.7.3

5.7.3.1

184 Chapter 5. Bayesian statistics

False discovery rates *

Suppose we are trying to discover a rare phenomenon using some kind of high throughput
measurement device, such as a gene expression micro array, or a radio telescope. We will need
to make many binary decisions of the form p(y; = 1|D) > 7, where D = {x;}¥; and N may
be large. This is called multiple hypothesis testing. Note that the difference from standard
binary classification is that we are classifying y; based on all the data, not just based on x;. So
this is a simultaneous classification problem, where we might hope to do better than a series of
individual classification problems.

How should we set the threshold 72 A natural approach is to try to minimize the expected
number of false positives. In the Bayesian approach, this can be computed as follows:

FD(r,D) £ (1 —p)I(p; > 7) (5.118)
TN———
PI. erIor discovery
where p; £ p(y; = 1|D) is your belief that this object exhibits the phenomenon in question.
We then define the posterior expected false discovery rate as follows:

FDR(7,D) 2 FD(r,D)/N(7,D) (5.119)

where N(7,D) = > ,I(p; > 7) is the number of discovered items. Given a desired FDR
tolerance, say o = 0.05, one can then adapt 7 to achieve this; this is called the direct posterior
probability approach to controlling the FDR (Newton et al. 2004; Muller et al. 2004).

In order to control the FDR it is very helpful to estimate the p;’s jointly (e.g., using a hierar-
chical Bayesian model, as in Section 5.5), rather than independently. This allows the pooling of
statistical strength, and thus lower FDR. See e.g., (Berry and Hochberg 1999) for more information.

Other topics *

In this section, we briefly mention a few other topics related to Bayesian decision theory. We do
not have space to go into detail, but we include pointers to the relevant literature.

Contextual bandits

A one-armed bandit is a colloquial term for a slot machine, found in casinos around the world.
The game is this: you insert some money, pull an arm, and wait for the machine to stop; if
you're lucky, you win some money. Now imagine there is a bank of K such machines to choose
from. Which one should you use? This is called a multi-armed bandit, and can be modeled
using Bayesian decision theory: there are K possible actions, and each action has an unknown
reward (payoff function) r. By maintaining a belief state, p(r1.x|D) = [], p(rx|D), one can
devise an optimal policy; this can be compiled into a series of Gittins Indices (Gittins 1989).
This optimally solves the exploration-exploitation tradeoff, which specifies how many times
one should try each action before deciding to go with the winner.

Now consider an extension where each arm, and the player, has an associated feature vector;
call all these features x. This is called a contextual bandit (see e.g., (Sarkar 1991; Scott 2010;
Li et al. 2011)). For example, the “arms” could represent ads or news articles which we want
to show to the user, and the features could represent properties of these ads or articles, such

5.7.3.2

5.7. Bayesian decision theory 185

as a bag of words, as well as properties of the user, such as demographics. If we assume a
linear model for reward, r, = ng, we can maintain a distribution over the parameters of each
arm, p(0y|D), where D is a series of tuples of the form (a,x,r), which specifies which arm
was pulled, what its features were, and what the resulting outcome was (e.g., » = 1 if the user
clicked on the ad, and r = 0 otherwise). We discuss ways to compute p(6|D) from linear and
logistic regression models in later chapters.

Given the posterior, we must decide what action to take. One common heuristic, known as
UCB (which stands for “upper confidence bound”) is to take the action which maximizes

k* = argihax ug + Aoy, (5.120)
k=1
where p, = E[ry|D], 07 = var [r;|D] and X is a tuning parameter that trades off exploration
and exploitation. The intuition is that we should pick actions about which we believe are good
(1r; is large), and/ or actions about which we are uncertain (o}, is large).
An even simpler method, known as Thompson sampling, is as follows. At each step, we pick
action k£ with a probability that is equal to its probability of being the optimal action:

Pr = /H(E [r|a, x, 0] = maxE[r|a’, x, 8])p(6|D)d6O (5.121)

We can approximate this by drawing a single sample from the posterior, 8° ~ p(8|D), and then
choosing k* = argmax, E [r|x, k, Bt] Despite its simplicity, this has been shown to work quite
well (Chapelle and Li 2011).

Utility theory

Suppose we are a doctor trying to decide whether to operate on a patient or not. We imagine
there are 3 states of nature: the patient has no cancer, the patient has lung cancer, or the
patient has breast cancer. Since the action and state space is discrete, we can represent the loss
function L(0, a) as a loss matrix, such as the following:

‘ Surgery No surgery

No cancer 20 0
Lung cancer 10 30
Breast cancer 10 60

These numbers reflects the fact that not performing surgery when the patient has cancer is
very bad (loss of 50 or 60, depending on the type of cancer), since the patient might die; not
performing surgery when the patient does not have cancer incurs no loss (0); performing surgery
when the patient does not have cancer is wasteful (loss of 20); and performing surgery when
the patient does have cancer is painful but necessary (10).

It is natural to ask where these numbers come from. Ultimately they represent the personal
preferences or values of a fictitious doctor, and are somewhat arbitrary: just as some people
prefer chocolate ice cream and others prefer vanilla, there is no such thing as the “right” loss/
utility function. However, it can be shown (see e.g., (DeGroot 1970)) that any set of consistent
preferences can be converted to a scalar loss/ utility function. Note that utility can be measured
on an arbitrary scale, such as dollars, since it is only relative values that matter.

6. People are often squeamish about talking about human lives in monetary terms, but all decision making requires

5.7.3.3

186 Chapter 5. Bayesian statistics

Sequential decision theory

So far, we have concentrated on one-shot decision problems, where we only have to make
one decision and then the game ends. In Setion 10.6, we will generalize this to multi-stage or
sequential decision problems. Such problems frequently arise in many business and engineering
settings. This is closely related to the problem of reinforcement learning. However, further
discussion of this point is beyond the scope of this book.

Exercises

Exercise 5.1 Proof that a mixture of conjugate priors is indeed conjugate

Derive Equation 5.69.
Exercise 5.2 Optimal threshold on classification probability

Consider a case where we have learned a conditional probability distribution P(y|x). Suppose there are
only two classes, and let po = P(Y = 0|x) and p1 = P(Y = 1]x). Consider the loss matrix below:

predicted | true label y
label 7 0 1
0 0 Aot

1 Ao 0

a. Show that the decision ¢ that minimizes the expected loss is equivalent to setting a probability threshold
0 and predicting g = 0 if p1 < 6 and g = 1 if p1 > 6. What is € as a function of Ao1 and A10? (Show
your work.)

b. Show a loss matrix where the threshold is 0.1. (Show your work.)

Exercise 5.3 Reject option in classifiers
(Source: (Duda et al. 2001, Q2.13).)

In many classification problems one has the option either of assigning x to class j or, if you are too
uncertain, of choosing the reject option. If the cost for rejects is less than the cost of falsely classifying
the object, it may be the optimal action. Let «; mean you choose action i, for i = 1 : C' 4 1, where C'
is the number of classes and C + 1 is the reject action. Let Y = j be the true (but unknown) state of
nature. Define the loss function as follows

0 ifi=jandi,je{l,...,C}
MailY =5) =4 A ifi=C+1 (5.122)
s otherwise

In otherwords, you incur 0 loss if you correctly classify, you incur A, loss (cost) if you choose the reject
option, and you incur Ay loss (cost) if you make a substitution error (misclassification).

tradeoffs, and one needs to use some kind of “currency” to compare different courses of action. Insurance companies
do this all the time. Ross Schachter, a decision theorist at Stanford University, likes to tell a story of a school board who
rejected a study on absestos removal from schools because it performed a cost-benefit analysis, which was considered
“inhumane” because they put a dollar value on children’s health; the result of rejecting the report was that the absestos
was not removed, which is surely more “inhumane”. In medical domains, one often measures utility in terms of QALY, or
quality-adjusted life-years, instead of dollars, but it's the same idea. Of course, even if you do not explicitly specify how
much you value different people’s lives, your behavior will reveal your implicit values/ preferences, and these preferences
can then be converted to a real-valued scale, such as dollars or QALY. Inferring a utility function from behavior is called
inverse reinforcement learning.

5.7. Bayesian decision theory 187

Decision | true label y
i 0 | 1
predict 0 0 10
predict 1 10 0
reject 3 3

a. Show that the minimum risk is obtained if we decide Y = j if p(Y = j|x) > p(Y = k|x) for all &
(i.e., j is the most probable class) and if p(Y = j|x) > 1 — i—’s, otherwise we decide to reject.

b. Describe qualitatively what happens as A, /s is increased from 0 to 1 (i.e., the relative cost of rejection
increases).

Exercise 5.4 More reject options

In many applications, the classifier is allowed to “reject” a test example rather than classifying it into one
of the classes. Consider, for example, a case in which the cost of a misclassification is $10 but the cost of
having a human manually make the decison is only $3. We can formulate this as the following loss matrix:

a. Suppose P(y = 1]x) is predicted to be 0.2. Which decision minimizes the expected loss?
b. Now suppose P(y = 1|x)=0.4. Now which decision minimizes the expected loss?

c. Show that in general, for this loss matrix, but for any posterior distribution, there will be two thresholds
0o and 61 such that the optimal decisionn is to predict 0 if p1 < 6o, reject if 6y < p1 < 64, and
predict 1 if p1 > 61 (where p1 = p(y = 1|x)). What are these thresholds?

Exercise 5.5 Newsvendor problem

Consider the following classic problem in decision theory/ economics. Suppose you are trying to decide
how much quantity @ of some product (e.g., newspapers) to buy to maximize your profits. The optimal
amount will depend on how much demand D you think there is for your product, as well as its cost
to you C' and its selling price P. Suppose D is unknown but has pdf f(D) and cdf F(D). We can
evaluate the expected profit by considering two cases: if D > @, then we sell all @) items, and make profit
m=(P—C)Q; butif D < Q, we only sell D items, at profit (P — C)D, but have wasted C(Q — D)
on the unsold items. So the expected profit if we buy quantity @ is

En(Q) = /Q " (P C)Qf(D)ID + / (P - C)DF(D / C(@Q-D)f(D)AD G123)

Simplify this expression, and then take derivatives wrt @) to show that the optimal quantity Q* (which
maximizes the expected profit) satisfies

.. P-C
FQ") = —5 (5.124)

Exercise 5.6 Bayes factors and ROC curves

Let B = p(D|H1)/p(D|Hp) be the bayes factor in favor of model 1. Suppose we plot two ROC curves,
one computed by thresholding B, and the other computed by thresholding p(H1|D). Will they be the
same or different? Explain why.

Exercise 5.7 Bayes model averaging helps predictive accuracy

Let A be a quantity that we want to predict, let D be the observed data and M be a finite set of models.
Suppose our action is to provide a probabilistic prediction p(), and the loss function is L(A,p()) =

188 Chapter 5. Bayesian statistics

—log p(A). We can either perform Bayes model averaging and predict using
PPMAA) = 3 p(Alm, D)p(m|D) (5:125)
meM
or we could predict using any single model (a plugin approximation)
p"(A) = p(Alm, D) (5.126)

Show that, for all models m € M, the posterior expected loss using BMA is lower, i.e.,
E [L(A, "M Y)] <E[LA,p™)] (5127)
where the expectation over A is with respect to

p(AD) = > p(Alm, D)p(m|D) (5.128)
meM

Hint: use the non-negativity of the KL divergence.

Exercise 5.8 MLE and model selection for a 2d discrete distribution
(Source: Jaakkola.)

Let € {0,1} denote the result of a coin toss (x = 0 for tails, z = 1 for heads). The coin is potentially
biased, so that heads occurs with probability 61. Suppose that someone else observes the coin flip and
reports to you the outcome, y. But this person is unreliable and only reports the result correctly with
probability 02; i.e., p(y|x, 02) is given by

‘y:O y=1
x=0 92 1—(92
r=1 1—62 92

Assume that 05 is independent of x and 6;.

a. Write down the joint probability distribution p(x,y|@) as a 2 x 2 table, in terms of 8 = (01, 02).
b. Suppose have the following dataset: x = (1,1,0,1,1,0,0), y = (1,0,0,0,1,0,1). What are the
MLEs for 61 and 62? Justify your answer. Hint: note that the likelihood function factorizes,
p(z,y|0) = p(ylz, 62)p(z|01) (5.129)
What is p(D|@, M) where M, denotes this 2-parameter model? (You may leave your answer in
fractional form if you wish.)

c. Now consider a model with 4 parameters, 8 = (60,0, 00,1, 61,0, 601,1), representing p(z,y|0) = 05 y.
(Only 3 of these parameters are free to vary, since they must sum to one.) What is the MLE of 8? What

is p(D|@, M) where M, denotes this 4-parameter model?

d. Suppose we are not sure which model is correct. We compute the leave-one-out cross validated log
likelihood of the 2-parameter model and the 4-parameter model as follows:

L(m) =Y logp(i, ys|m, 0(D-.)) (5.130)
=1

and 0(D_;)) denotes the MLE computed on D excluding row 7. Which model will CV pick and why?
Hint: notice how the table of counts changes when you omit each training case one at a time.

5.7. Bayesian decision theory 189

e. Recall that an alternative to CV is to use the BIC score, defined as

dof (M)
2

BIC(M, D) £ log p(D|Orrr) — log N (5.131)

where dof (M) is the number of free parameters in the model, Compute the BIC scores for both models
(use log base e). Which model does BIC prefer?

Exercise 5.9 Posterior median is optimal estimate under LI loss

Prove that the posterior median is optimal estimate under L1 loss.

Exercise 5.10 Decision rule for trading off FPs and FNs
If Lrn = cLrpp, show that we should pick § = 1 iff p(y = 1|x)/p(y = 0|x) > 7, where 7 = ¢/(1 + ¢)

6.1

6.2

Frequentist statistics

Introduction

The approach to statistical inference that we described in Chapter 5 is known as Bayesian
statistics. Perhaps surprisingly, this is considered controversial by some people, whereas the ap-
plication of Bayes rule to non-statistical problems — such as medical diagnosis (Section 2.2.3.1),
spam filtering (Section 3.4.4.]), or airplane tracking (Section 18.2.1) — is not controversial. The
reason for the objection has to do with a misguided distinction between parameters of a statis-
tical model and other kinds of unknown quantities.!

Attempts have been made to devise approaches to statistical inference that avoid treating
parameters like random variables, and which thus avoid the use of priors and Bayes rule. Such
approaches are known as frequentist statistics, classical statistics or orthodox statistics.
Instead of being based on the posterior distribution, they are based on the concept of a sampling
distribution. This is the distribution that an estimator has when applied to multiple data sets
sampled from the true but unknown distribution; see Section 6.2 for details. It is this notion
of variation across repeated trials that forms the basis for modeling uncertainty used by the
frequentist approach.

By contrast, in the Bayesian approach, we only ever condition on the actually observed data;
there is no notion of repeated trials. This allows the Bayesian to compute the probability of
one-off events, as we discussed in Section 2.1. Perhaps more importantly, the Bayesian approach
avoids certain paradoxes that plague the frequentist approach (see Section 6.6). Nevertheless, it
is important to be familiar with frequentist statistics (especially Section 6.5), since it is widely
used in machine learning.

Sampling distribution of an estimator

In frequentist statistics, a parameter estimate 0 is computed by applying an estimator § to
some data D, so § = d(D). The parameter is viewed as fixed and the data as random, which
is the exact opposite of the Bayesian approach. The uncertainty in the parameter estimate can
be measured by computing the sampling distribution of the estimator. To understand this

1. Parameters are sometimes considered to represent true (but unknown) physical quantities, which are therefore not
random. However, we have seen that it is perfectly reasonable to use a probability distribution to represent one’s
uncertainty about an unknown constant.

6.2.1

192 Chapter 6. Frequentist statistics

Boot: true = 0.70, n=10, mle = 0.90, se = 0.001 Boot: true = 0.70, n=100, mle = 0.70, se = 0.000

3500) 3000

3000)
2500)
2500)
2000)
2000)
1500
1500

1000
1000

500 50|

Figure 6.1 A bootstrap approximation to the sampling distribution of 6 for a Bernoulli distribution. We
use B = 10,000 bootstrap samples. The N datacases were generated from Ber(6 = 0.7). (a) MLE with
N = 10. (b) MLE with N = 100. Figure generated by bootstrapDemoBer.

concept, imagine sampling many different data sets D(*) from some true model, p(-|6*), i.e., let
D) = {mgs) N |, where 2 ~ p(-|0*), and 0" is the true parameter. Here s = 1 : S indexes
the sampled data set, and NN is the size of each such dataset. Now apply the estimator 6(-)
to each D(*) to get a set of estimates, {0(D(*))}. As we let S — oo, the distribution induced
on 0(-) is the sampling distribution of the estimator. We will discuss various ways to use the
sampling distribution in later sections. But first we sketch two approaches for computing the
sampling distribution itself.

Bootstrap

The bootstrap is a simple Monte Carlo technique to approximate the sampling distribution. This
is particularly useful in cases where the estimator is a complex function of the true parameters.

The idea is simple. If we knew the true parameters 6*, we could generate many (say S) fake
datasets, each of size N, from the true distribution, 27 ~ p(-|0*), for s =1:5,i=1: N.
We could then compute our estimator from each sample, 6% = f(x%.,) and use the empirical
distribution of the resulting samples as our estimate of the sampling distribution. Since 6 is
unknown, the idea of the parametric bootstrap is to generate the samples using 6(D) instead.
An alternative, called the non-parametric bootstrap, is to sample the z; (with replacement)
from the original data D, and then compute the induced distribution as before. Some methods
for speeding up the bootstrap when applied to massive data sets are discussed in (Kleiner et al.
2011).

Figure 6.1 shows an example where we compute the sampling distribution of the MLE for
a Bernoulli using the parametric bootstrap. (Results using the non-parametric bootstrap are
essentially the same.) We see that the sampling distribution is asymmetric, and therefore quite
far from Gaussian, when N = 10; when N = 100, the distribution looks more Gaussian, as
theory suggests (see below).

A natural question is: what is the connection between the parameter estimates §° = 6 (x5,)
computed by the bootstrap and parameter values sampled from the posterior, 0° ~ p(:|D)?

6.2.2

6.2. Sampling distribution of an estimator 193

Conceptually they are quite different. But in the common case that that the prior is not very
strong, they can be quite similar. For example, Figure 6.1(c-d) shows an example where we
compute the posterior using a uniform Beta(L,]) prior, and then sample from it. We see that
the posterior and the sampling distribution are quite similar. So one can think of the bootstrap
distribution as a “poor man’s” posterior; see (Hastie et al. 2001, p235) for details.

However, perhaps surprisingly, bootstrap can be slower than posterior sampling. The reason
is that the bootstrap has to fit the model S times, whereas in posterior sampling, we usually
only fit the model once (to find a local mode), and then perform local exploration around the
mode. Such local exploration is usually much faster than fitting a model from scratch.

Large sample theory for the MLE *

In some cases, the sampling distribution for some estimators can be computed analytically. In
particular, it can be shown that, under certain conditions, as the sample size tends to infinity,
the sampling distribution of the MLE becomes Gaussian. Informally, the requirement for this
result to hold is that each parameter in the model gets to “see” an infinite amount of data, and
that the model be identifiable. Unfortunately this excludes many of the models of interest to
machine learning. Nevertheless, let us assume we are in a simple setting where the theorem
holds.

The center of the Gaussian will be the MLE 6. But what about the variance of this Gaussian?
Intuitively the variance of the estimator will be (inversely) related to the amount of curvature of
the likelihood surface at its peak. If the curvature is large, the peak will be “sharp”, and the
variance low; in this case, the estimate is “well determined”. By contrast, if the curvature is
small, the peak will be nearly “flat”, so the variance is high.

Let us now formalize this intuition. Define the score function as the gradient of the log
likelihood evaluated at some point 6:

s(8) £ Viogp(D|0)], (6.1)

Define the observed information matrix as the gradient of the negative score function, or
equivalently, the Hessian of the NLL:

J(6(D)) £ ~Vs(6) = ~Vglogp(D|6)], 6.2)
In 1D, this becomes
. d
J(O(D)) = =55 logp(DI0) (6.3)
This is just a measure of curvature of the log-likelihood function at .
Since we are studying the sampling distribution, D = (x1,...,Xy) is a set of random

variables. The Fisher information matrix is defined to be the expected value of the observed
information matrix:?

In(0]67) 2 Eo- [J(éﬂ))] (6.4)

2. This is not the usual definition, but is equivalent to it under standard assumptions. More precisely, the standard
definition is as follows (we just give the scalar case to simplify notation): 1(6|6*) £ varg« [% log p(X16)| é], that

is, the variance of the score function. If @ is the MLE, it is easy to see that Eg« [d% 10gp(X|9)|é} = 0 (since

6.3

194 Chapter 6. Frequentist statistics

where Eg- [f(D)] £ & Zfil f(x;)p(x;|0") is the expected value of the function f when
applied to data sampled from 8*. Often 6, representing the “true parameter” that generated
the data, is assumed known, so we just write Iy (8) 2 Iy (0|0*) for short. Furthermore, it is
easy to see that Iy (8) = NI, (6), because the log-likelihood for a sample of size N is just N
times “steeper” than the log-likelihood for a sample of size 1. So we can drop the 1 subscript
and just write 1(8) £ I;(6). This is the notation that is usually used.

Now let 6 £ émle(D) be the MLE, where D ~ 0. It can be shown that
6 — N0, Ix(0")7h) (6.5)

as N — oo (see e.g., (Rice 1995, p265) for a proof). We say that the sampling distribution of the
MLE is asymptotically normal.

What about the variance of the MLE, which can be used as some measure of confidence
in the MLE? Unfortunately, 8" is unknown, so we can't evaluate the variance of the sampling
distribution. However, we can approximate the sampling distribution by replacing 8™ with 6.
Consequently, the approximate standard errors of 6, are given by

sep £ IN(é)];k% (6.6)

For example, from Equation 5.60 we know that the Fisher information for a binomial sampling
model is

1
1(0 — 6.7
O = sa=9 (6.7
So the approximate standard error of the MLE is
se (6.8)

1 _(é(1—§)>2

JIn@) /NI N
where 6 = % >; Xi. Compare this to Equation 3.27, which is the posterior standard deviation
under a uniform prior.

Frequentist decision theory

In frequentist or classical decision theory, there is a loss function and a likelihood, but there is
no prior and hence no posterior or posterior expected loss. Thus there is no automatic way of
deriving an optimal estimator, unlike the Bayesian case. Instead, in the frequentist approach, we
are free to choose any estimator or decision procedure § : X — A we want.?

the gradient must be zero at a maximum), so the variance reduces to the expected square of the score function:

1(6]6*) = Eg- [(d%logp(XW))Q]. It can be shown (e.g, (Rice 1995, p263)) that Eg=« [(d%logp(XW))Q] =

2
—Eg+ [dﬁ? log p(X |9)], so now the Fisher information reduces to the expected second derivative of the NLL, which

is @ much more intuitive quantity than the variance of the score.

3. In practice, the frequentist approach is usually only applied to one-shot statistical decision problems — such as
classification, regression and parameter estimation — since its non-constructive nature makes it difficult to apply to
sequential decision problems, which adapt to data online.

6.3.1

6.3. Frequentist decision theory 195

Having chosen an estimator, we define its expected loss or risk as follows:
R(0%,6) £ E, 51+ [L(&*,(S(ﬁ))} = / L(6*,6(D))p(D|0*)dD 6.9)

where D is data sampled from “nature’s distribution”, which is represented by parameter 6*. In
other words, the expectation is wrt the sampling distribution of the estimator. Compare this to
the Bayesian posterior expected loss:

p(a|D,) £ Eyp,n) [L(8,0)] = /@L(G,a)p(@ﬂ),w)d& (6.10)

We see that the Bayesian approach averages over 6 (which is unknown) and conditions on D
(which is known), whereas the frequentist approach averages over D (thus ignoring the observed
data), and conditions on 6* (which is unknown).

Not only is the frequentist definition unnatural, it cannot even be computed, because 0* is
unknown. Consequently, we cannot compare different estimators in terms of their frequentist
risk. We discuss various solutions to this below.

Bayes risk

How do we choose amongst estimators? We need some way to convert R(6”,4) into a single
measure of quality, R(d), which does not depend on knowing 6. One approach is to put a
prior on %, and then to define Bayes risk or integrated risk of an estimator as follows:

Ri(8) £ Eyor) [R(6,)] = / R(6%,6)p(6°)d6" 611

A Bayes estimator or Bayes decision rule is one which minimizes the expected risk:
6p £ argmin Rp () (6.12)
s
Note that the integrated risk is also called the preposterior risk, since it is before we have seen
the data. Minimizing this can be useful for experiment design.

We will now prove a very important theorem, that connects the Bayesian and frequentist
approaches to decision theory.

Theorem 6.3.1. A Bayes estimator can be obtained by minimizing the posterior expected loss for
each x.

Proof. By switching the order of integration, we have

Rp(d) = /lZZL(yﬁ(X))p(X,y@*)] p(67)de” (6.13)
= XX [lndtx)plx.s.07)d6 619
= >

X

= Y p0) plx) (6.16)

> L(y,s (X))p(yX)dy] p(x) (6.15)

6.3.2

196 Chapter 6. Frequentist statistics

R
- R(0,41) -
T T R0,y

Figure 6.2 Risk functions for two decision procedures, §; and 2. Since §; has lower worst case risk, it
is the minimax estimator, even though &2 has lower risk for most values of #. Thus minimax estimators
are overly conservative.

To minimize the overall expectation, we just minimize the term inside for each x, so our decision
rule is to pick

dp(x) = argmin p(alx) (6.17)
acA

O

Hence we see that the picking the optimal action on a case-by-case basis (as in the Bayesian
approach) is optimal on average (as in the frequentist approach). In other words, the Bayesian
approach provides a good way of achieving frequentist goals. In fact, one can go further and
prove the following.

Theorem 6.3.2 (Wald, 1950). Every admissable decision rule is a Bayes decision rule with respect
to some, possibly improper, prior distribution.

This theorem shows that the best way to minimize frequentist risk is to be Bayesian! See

(Bernardo and Smith 1994, p448) for further discussion of this point.

Minimax risk

Obviously some frequentists dislike using Bayes risk since it requires the choice of a prior (al-
though this is only in the evaluation of the estimator, not necessarily as part of its construction).
An alternative approach is as follows. Define the maximum risk of an estimator as

Roas (8) 2 e R(67,) (6.18)
A minimax rule is one which minimizes the maximum risk:

Svm 2 arg;nin Rinaz(0) (6.19)

6.3.3

6.3.3.1

6.3. Frequentist decision theory 197

For example, in Figure 6.2, we see that §; has lower worst-case risk than ds, ranging over all
possible values of 6%, so it is the minimax estimator (see Section 6.3.3.1 for an explanation of
how to compute a risk function for an actual model).

Minimax estimators have a certain appeal. However, computing them can be hard. And
furthermore, they are very pessimistic. In fact, one can show that all minimax estimators
are equivalent to Bayes estimators under a least favorable prior. In most statistical situations
(excluding game theoretic ones), assuming nature is an adversary is not a reasonable assumption.

Admissible estimators

The basic problem with frequentist decision theory is that it relies on knowing the true distri-
bution p(-|6*) in order to evaluate the risk. However, It might be the case that some estimators
are worse than others regardless of the value of 6*. In particular, if R(6,d1) < R(6,02) for all
0 € O, then we say that /; dominates d5. The domination is said to be strict if the inequality
is strict for some 6. An estimator is said to be admissible if it is not strictly dominated by any
other estimator.

Example

Let us give an example, based on (Bernardo and Smith 1994). Consider the problem of estimating
the mean of a Gaussian. We assume the data is sampled from x; ~ N(0*,0% = 1) and use
quadratic loss, L(6,) = (8 —). The corresponding risk function is the MSE. Some possible
decision rules or estimators 6(x) = §(x) are as follows:

e Hi(x T, the sample mean

X, the sample median

[]
(=%

X) = fp, a fixed value

3

(x)
* d2(x)
(x)
* J,(x), the posterior mean under a N'(6|6y, 02 /x) prior:

_ N z4 K
_N—i—nx N +k

0 (x) 0o = wT + (1 —w)by (6.20)

For 0,, we consider a weak prior, K = 1, and a stronger prior, K = 5. The prior mean is 6,
some fixed value. We assume o2 is known. (Thus d3(x) is the same as 6, (x) with an infinitely
strong prior, Kk = 00.)

Let us now derive the risk functions analytically. (We can do this since in this toy example,
we know the true parameter 6*.) In Section 6.4.4, we show that the MSE can be decomposed
into squared bias plus variance:

MSE@()|6*) = var [é} + bias? (0) 6.2)
The sample mean is unbiased, so its risk is

MSE(8,]0%) = var [z] = 6.22)

=%

198 Chapter 6. Frequentist statistics

0.5 T

risk functions for n=20
0.18 T T T T

- x
mle ., mle 1 I
0.45[u = = =« median " | 1 0.16| = = = = median . .
oal = —fixed \ . | = = - fixed | I
“'|| == == postmean1 |* 1 0.14 | == == postmean1 . .
0.35H postmean5 \ . postmean5 |]
- . .
| 0.12
0] e \'"""""- """""" | '
= '\ I = 01r 1 '
S o025 ! ; & 1
« ~N - L 008 wwessas\gesannnmenans [T
02} m— \ — 1]
S M -7 0.06 H .
0.15 Sl - | I -
. 1 e =
0.1 \ . 004 \
. ’ P
0.05 Nt 002} \
O .
0 . \. 0 . L%
2 15 -0.5 0 0.5 1 15 2 2 15 -0.5 0 0.5 1 15 2
0. 0.
(a) (b)

Figure 6.3 Risk functions for estimating the mean of a Gaussian using data sampled N'(6*, 0% = 1).
The solid dark blue horizontal line is the MLE, the solid light blue curved line is the posterior mean when
k = 5. Left: N = 5 samples. Right: N = 20 samples. Based on Figure B.1 of (Bernardo and Smith 1994).
Figure generated by riskFnGauss.

The sample median is also unbiased. One can show that the variance is approximately 7/(2N),
$0

s

For 03(x) = 0, the variance is zero, so
MSE(53)6%) = (0* — 6,)? (6.24)

Finally, for the posterior mean, we have
MSE(5,)0*) = E [(wf (1 —w)y — 9*)2} (6.25)
- E [(w(f—a*)+(1—w)(90—9*))2} (6.26)

o2
= w2W + (1 —w)?(fy — 6%)2 (6.27)
L 2, .2)2

= iR (No? + k(6o — 6%)?) (6.28)

These functions are plotted in Figure 6.3 for N € {5,20}. We see that in general, the best
estimator depends on the value of 6*, which is unknown. If 6* is very close to 6y, then d3
(which just predicts) is best. If 6* is within some reasonable range around 6, then the
posterior mean, which combines the prior guess of 8y with the actual data, is best. If 8* is far
from 6, the MLE is best. None of this should be suprising: a small amount of shrinkage (using
the posterior mean with a weak prior) is usually desirable, assuming our prior mean is sensible.

What is more surprising is that the risk of decision rule d5 (sample median) is always higher
than that of §; (sample mean) for every value of 0*. Consequently the sample median is an

6.3.3.2

6.3.3.3

6.3. Frequentist decision theory 199

inadmissible estimator for this particular problem (where the data is assumed to come from a
Gaussian).

In practice, the sample median is often better than the sample mean, because it is more
robust to outliers. One can show (Minka 2000d) that the median is the Bayes estimator (under
squared loss) if we assume the data comes from a Laplace distribution, which has heavier tails
than a Gaussian. More generally, we can construct robust estimators by using flexible models
of our data, such as mixture models or non-parametric density estimators (Section 14.7.2), and
then computing the posterior mean or median.

Stein’s paradox *

Suppose we have N iid random variables X; ~ A (6;,1), and we want to estimate the ;. The
obvious estimator is the MLE, which in this case sets §; = ;. It turns out that this is an
inadmissible estimator under quadratic loss, when N > 4.

To show this, it suffices to construct an estimator that is better. The James-Stein estimator is
one such estimator, and is defined as follows:

0; = Bz+(1—B)z; =7+ (1—B)(z; —) (6.29)

where 7 = + Zfil x; and 0 < B < 1 is some tuning constant. This estimate “shrinks” the
0; towards the overall mean. (We derive this estimator using an empirical Bayes approach in
Section 5.6.2.)

It can be shown that this shrinkage estimator has lower frequentist risk (MSE) than the MLE
(sample mean) for N > 4. This is known as Stein’s paradox. The reason it is called a paradox
is illustrated by the following example. Suppose 0; is the “true” IQ of student 7 and X; is his
test score. Why should my estimate of ; depend on the global mean Z, and hence on some
other student’s scores? One can create even more paradoxical examples by making the different
dimensions be qualitatively different, e.g., 01 is my IQ, 05 is the average rainfall in Vancouver,
etc.

The solution to the paradox is the following. If your goal is to estimate just 6;, you cannot do
better than using x;, but if the goal is to estimate the whole vector 6, and you use squared error
as your loss function, then shrinkage helps. To see this, suppose we want to estimate ||6)||3 from
a single sample x ~ A/(6,1). A simple estimate is ||x||3, but this will overestimate the result,
since

E [[Ix[3]

lezz (1+67) =N +10]3 (6.30)
=1

Consequently we can reduce our risk by pooling information, even from unrelated sources, and
shrinking towards the overall mean. In Section 5.6.2, we give a Bayesian explanation for this.
See also (Efron and Morris 1975).

Admissibility is not enough

It seems clear that we can restrict our search for good estimators to the class of admissible
estimators. But in fact it is easy to construct admissible estimators, as we show in the following
example.

6.4

6.4.1

6.4.2

200 Chapter 6. Frequentist statistics

Theorem 6.3.3. Let X ~ N (6, 1), and consider estimating 6 under squared loss. Let 5, (x) = 0y,
a constant independent of the data. This is an admissible estimator.

Proof. Suppose not. Then there is some other estimator do with smaller risk, so R(6*,d3) <

R(6*,01), where the inequality must be strict for some 6*. Suppose the true parameter is
0* = 0y. Then R(0*,61) =0, and

Rwﬁgz/@@ywﬁmwmm 631

Since 0 < R(0*,d5) < R(0*,6;) for all #*, and R(0y,01) = 0, we have R(6y,d2) = 0 and
hence d2(xz) = 0y = 1 (). Thus the only way 02 can avoid having higher risk than ¢; at some
specific point 6 is by being equal to ;. Hence there is no other estimator o with strictly lower
risk, so 0o is admissible. O

Desirable properties of estimators

Since frequentist decision theory does not provide an automatic way to choose the best estimator,
we need to come up with other heuristics for choosing amongst them. In this section, we discuss
some properties we would like estimators to have. Unfortunately, we will see that we cannot
achieve all of these properties at the same time.

Consistent estimators

An estimator is said to be consistent if it eventually recovers the true parameters that generated
the data as the sample size goes to infinity, ie., §(D) — 0* as |D| — oo (where the arrow
denotes convergence in probability). Of course, this concept only makes sense if the data actually
comes from the specified model with parameters 6*, which is not usually the case with real
data. Nevertheless, it can be a useful theoretical property.

It can be shown that the MLE is a consistent estimator. The intuitive reason is that maxi-
mizing likelihood is equivalent to minimizing KIL (p(\@*)”p(m)), where p(:|0") is the true

distribution and p(-|) is our estimate. We can achieve 0 KL divergence iff 6 = 6*.*

Unbiased estimators
The bias of an estimator is defined as
MM%D:&mmP@%44 (6.32)

where 0, is the true parameter value. If the bias is zero, the estimator is called unbiased. This
means the sampling distribution is centered on the true parameter. For example, the MLE for a
Gaussian mean is unbiased:

bias(i) =E[z] —u=E

N
1 Nu

E i =~ =0 6.33
Nz‘:1x] =N " (6.33)

4. If the model is unidentifiable, the MLE may select a set of parameters that is different from the true parameters
but for which the induced distribution, p(-|@), is the same as the exact distribution. Such parameters are said to be
likelihood equivalent.

6.4.3

6.4. Desirable properties of estimators 201

2

However, the MLE for a Gaussian variance, &2, is not an unbiased estimator of o2. In fact, one

can show (Exercise 6.3) that

N -1
E[6%] = ~ o’ (6.34)
However, the following estimator
N
N 1
X1 =510 = g 2 @i)’ (6.35)
i=1

is an unbiased estimator, which we can easily prove as follows:

N N N-1
]E[&?Vl}z]E[N_l&Q}zN_l N o? =o? (6.36)

In Matlab, var (X) returns &]2\,71, whereas var (X,1) returns 62 (the MLE). For large enough
N, the difference will be negligible.

Although the MLE may sometimes be a biased estimator, one can show that asymptotically, it
is always unbiased. (This is necessary for the MLE to be a consistent estimator.)

Although being unbiased sounds like a desirable property, this is not always true. See Sec-
tion 6.4.4 and (Lindley 1972) for discussion of this point.

Minimum variance estimators

It seems intuitively reasonable that we want our estimator to be unbiased (although we shall
give some arguments against this claim below). However, being unbiased is not enough. For
example, suppose we want to estimate the mean of a Gaussian from D = {zy,...,2x}. The
estimator that just looks at the first data point, é(D) = x1, is an unbiased estimator, but will
generally be further from 6, than the empirical mean Z (which is also unbiased). So the variance
of an estimator is also important.

A natural question is: how long can the variance go? A famous result, called the Cramer-
Rao lower bound, provides a lower bound on the variance of any unbiased estimator. More
precisely,

Theorem 6.4.1 (Cramer-Rao inequality). Let X1, ..., X, ~ p(X|6o) and 6 = 6(xy, ..., x,) be
an unbiased estimator of 6. Then, under various smoothness assumptions on p(X|0y), we have

var [é} > - I(l o 6.37)

where I(0y) is the Fisher information matrix (see Section 6.2.2).

A proof can be found e.g., in (Rice 1995, p275).

It can be shown that the MLE achieves the Cramer Rao lower bound, and hence has the
smallest asymptotic variance of any unbiased estimator. Thus MLE is said to be asymptotically
optimal.

6.4.4

6.4.4.1

202 Chapter 6. Frequentist statistics

The bias-variance tradeoff

Although using an unbiased estimator seems like a good idea, this is not always the case. To see
why, suppose we use quadratic loss. As we showed above, the corresponding risk is the MSE.
We now derive a very useful decomposition of the MSE. (All expectations and variances are wrt
the true distribution p(D|#*), but we drop the explicit conditioning for notational brevity.) Let

0 = (D) denote the estimate, and = E {OA} denote the expected value of the estimate (as we
vary D). Then we have

E [(é - 9*)2} = E _[(é —0)+ (0 — e*)} 1 (6.38)

é—ﬁf}+2@—eﬂEp—9]+W—9ﬂ2 (6.39)

(
- E (é - 9)1 + (-0 (6.40)
— var [é} + bias?(6) (6.4)

In words,

MSE = variance + bias> (6.42)

This is called the bias-variance tradeoff (see e.g., (Geman et al. 1992)). What it means is that
it might be wise to use a biased estimator, so long as it reduces our variance, assuming our goal
is to minimize squared error.

Example: estimating a Gaussian mean

Let us give an example, based on (Hoff 2009, p79). Suppose we want to estimate the mean of a
Gaussian from x = (21,...,2y). We assume the data is sampled from z; ~ N (6* = 1,02).

An obvious estimate is the MLE. This has a bias of 0 and a variance of

0.2

ar [7]0%] = — 6.43
var [7|60"] = & (6.43)
But we could also use a MAP estimate. In Section 4.6.1, we show that the MAP estimate under

a Gaussian prior of the form N (6,02 /kq) is given by
N Ro

N+K]0x+N+K/O

where 0 < w < 1 controls how much we trust the MLE compared to our prior. (This is also the
posterior mean, since the mean and mode of a Gaussian are the same.) The bias and variance
are given by

E[7] - ¢*

lI>

z

wly + (1 — w)90 —0* = (1 — w)(Ho — 9*) (6.45)
2
27

N (6.46)

var[Z] = w

6.4.4.2

6.4.4.3

6.4. Desirable properties of estimators 203

sampling distribution, truth = 1.0, prior = 0.0, n =5 MSE of postmean / MSE of MLE
151 1.3
—©— postMean0 —E©— postMean0
—— postMean1 12k =3 postMean1
—¥— postMean2 - —¥— postMean2
—B— postMean3 postMean3

0.9

relative MSE

0.8

051
0.71

0.6

05
0 10 20 30 40 50
sample size

(@) (b)

Figure 6.4 Left: Sampling distribution of the MAP estimate with different prior strengths xo. (The MLE
corresponds to ko = 0.) Right: MSE relative to that of the MLE versus sample size. Based on Figure 5.6 of
(Hoff 2009). Figure generated by samplingDistGaussShrinkage.

So although the MAP estimate is biased (assuming w < 1), it has lower variance.

Let us assume that our prior is slightly misspecified, so we use 6y = 0, whereas the truth is
0* = 1. In Figure 6.4(a), we see that the sampling distribution of the MAP estimate for £y > 0
is biased away from the truth, but has lower variance (is narrower) than that of the MLE.

In Figure 6.4(b), we plot mse(Z)/mse(T) vs N. We see that the MAP estimate has lower MSE
than the MLE, especially for small sample size, for kg € {1,2}. The case ko = 0 corresponds to
the MLE, and the case ko = 3 corresponds to a strong prior, which hurts performance because
the prior mean is wrong. It is clearly important to “tune” the strength of the prior, a topic we
discuss later.

Example: ridge regression

Another important example of the bias variance tradeoff arises in ridge regression, which we
discuss in Section 7.5. In brief, this corresponds to MAP estimation for linear regression under
a Gaussian prior, p(w) = A/(w|0, \"'I) The zero-mean prior encourages the weights to be
small, which reduces overfitting; the precision term, A, controls the strength of this prior. Setting
A = 0 results in the MLE; using A > 0 results in a biased estimate. To illustrate the effect on
the variance, consider a simple example. Figure 6.5 on the left plots each individual fitted curve,
and on the right plots the average fitted curve. We see that as we increase the strength of the
regularizer, the variance decreases, but the bias increases.

Bias-variance tradeoff for classification

If we use 0-1 loss instead of squared error, the above analysis breaks down, since the frequentist
risk is no longer expressible as squared bias plus variance. In fact, one can show (Exercise 7.2
of (Hastie et al. 2009)) that the bias and variance combine multiplicatively. If the estimate is on

6.5

204 Chapter 6. Frequentist statistics

In(A) = 5 In(A) = 5
15
1
0.5
0
-05
-1
-15

In(A) = -5
15
1
0.5
0
-0.5
-1

Figure 6.5 Illustration of bias-variance tradeoff for ridge regression. We generate 100 data sets from the
true function, shown in solid green. Left: we plot the regularized fit for 20 different data sets. We use
linear regression with a Gaussian RBF expansion, with 25 centers evenly spread over the [0, 1] interval.
Right: we plot the average of the fits, averaged over all 100 datasets. Top row: strongly regularized: we see
that the individual fits are similar to each other (low variance), but the average is far from the truth (high
bias). Bottom row: lightly regularized: we see that the individual fits are quite different from each other
(high variance), but the average is close to the truth (low bias). Based on (Bishop 2006a) Figure 3.5. Figure
generated by biasVarModelComplexity3.

the correct side of the decision boundary, then the bias is negative, and decreasing the variance
will decrease the misclassification rate. But if the estimate is on the wrong side of the decision
boundary, then the bias is positive, so it pays to increase the variance (Friedman 1997a). This
little known fact illustrates that the bias-variance tradeoff is not very useful for classification.
It is better to focus on expected loss (see below), not directly on bias and variance. We can
approximate the expected loss using cross validatinon, as we discuss in Section 6.5.3.

Empirical risk minimization

Frequentist decision theory suffers from the fundamental problem that one cannot actually
compute the risk function, since it relies on knowing the true data distribution. (By contrast,
the Bayesian posterior expected loss can always be computed, since it conditions on the the
data rather than conditioning on 6*.) However, there is one setting which avoids this problem,
and that is where the task is to predict observable quantities, as opposed to estimating hidden
variables or parameters. That is, instead of looking at loss functions of the form L(8, (D)),
where 0 is the true but unknown parameter, and 6(D) is our estimator, let us look at loss

6.5.1

6.5. Empirical risk minimization 205

functions of the form L(y,d(x)), where y is the true but unknown response, and 6(x) is our
prediction given the input x. In this case, the frequentist risk becomes

R(p+,8) & Ex)mp. [L ZZL y,0(x))pu(x,y) (6.47)

where p, represents “nature’s distribution”. Of course, this distribution is unknown, but a simple
approach is to use the empirical distribution, derived from some training data, to approximate
Dx, 1.€.,

P+ (X, 9) ¥ Permp (X,) £ Zé (6.48)

We then define the empirical risk as follows:

N
1
Remp(D» D) £ R(pempa 6) = N Z L(yia 6(Xz)) (6.49)

In the case of 0-1loss, L(y, d(x)) = I(y # 0(x)), this becomes the misclassification rate. In
the case of squared error loss, L(y, §(x)) = (y—&(x))?, this becomes the mean squared error.
We define the task of empirical risk minimization or ERM as finding a decision procedure
(typically a classification rule) to minimize the empirical risk:

dprm (D) = argmin Re,,, (D, 0) (6.50)

8
In the unsupervised case, we eliminate all references to y, and replace L(y,d(x)) with
L(x,8(x)), where, for example, L(x,d(x)) = ||x — §(x)||3, which measures the reconstruc-

tion error. We can define the decision rule using §(x) = decode(encode(x)), as in vector
quantization (Section 11.4.2.6) or PCA (section 12.2). Finally, we define the empirical risk as

Remp(D,0) = ZL xi,0(x:)) (6.5)

Of course, we can always trivially minimize this risk by setting §(x) = x, so it is critical that
the encoder-decoder go via some kind of bottleneck.

Regularized risk minimization

Note that the empirical risk is equal to the Bayes risk if our prior about “nature’s distribution” is
that it is exactly equal to the empirical distribution (Minka 2001b):

E [R(p*a 5)|p>~< = pemp] = REmp(D7 5) (6.52)

Therefore minimizing the empirical risk will typically result in overfitting. It is therefore often
necessary to add a complexity penalty to the objective function:

R/(D,5) = Remp(D,) + AC(6) (6.53)

6.5.2

6.5.3

206 Chapter 6. Frequentist statistics

where C'(0) measures the complexity of the prediction function d(x) and A controls the strength
of the complexity penalty. This approach is known as regularized risk minimization (RRM).
Note that if the loss function is negative log likelihood, and the regularizer is a negative log
prior, this is equivalent to MAP estimation.

The two key issues in RRM are: how do we measure complexity, and how do we pick \. For
a linear model, we can define the complexity of in terms of its degrees of freedom, discussed in
Section 7.5.3. For more general models, we can use the VC dimension, discussed in Section 6.5.4.
To pick A, we can use the methods discussed in Section 6.5.2.

Structural risk minimization

The regularized risk minimization principle says that we should fit the model, for a given
complexity penalty, by using

Oy = argmin [Rep,(D, 8) + AC(6)] (6.54)
1)

But how should we pick \? We cannot using the training set, since this will underestimate the
true risk, a problem known as optimism of the training error. As an alternative, we can use
the following rule, known as the structural risk minimization principle: (Vapnik 1998):

A = argmin R(y) (6.55)
A

where R(6) is an estimate of the risk. There are two widely used estimates: cross validation
and theoretical upper bounds on the risk. We discuss both of these below.

Estimating the risk using cross validation

We can estimate the risk of some estimator using a validation set. If we don't have a separate
validation set, we can use cross validation (CV), as we briefly discussed in Section 1.4.8. More
precisely, CV is defined as follows. Let there be N = |D| data cases in the training set. Denote
the data in the k'th test fold by Dy and all the other data by D_j. (In stratified CV, these folds
are chosen so the class proportions (if discrete labels are present) are roughly equal in each
fold) Let F be a learning algorithm or fitting function that takes a dataset and a model index
m (this could a discrete index, such as the degree of a polynomial, or a continuous index, such
as the strength of a regularizer) and returns a parameter vector:

0., = F(D,m) (6.56)

Finally, let P be a prediction function that takes an input and a parameter vector and returns a
prediction:

j="P(x,0) = f(x,6) (6.57)
Thus the combined fit-predict cycle is denoted as
fm(x,D) = P(x, F(D,m)) (6.58)

6.5.3.1

6.5. Empirical risk minimization 207

The K-fold CV estimate of the risk of f,, is defined by

R(m,D,K) Z > L(yi, P(xi, F(D_,m))) (6.59)

k 1i€Dy,

Note that we can call the fitting algorithm once per fold. Let f* (x) = P(x, F(D_x,m)) be
the function that was trained on all the data except for the test data in fold k. Then we can
rewrite the CV estimate as

R(m,D,K) Z 3L (g fhx) = NZL(y“ 0 (x:)) (6.60)

k 1i€Dy,

where k(7) is the fold in which 7 is used as test data. In other words, we predict y; using a
model that was trained on data that does not contain x;.

Of K = N, the method is known as leave one out cross validation or LOOCV. In this case,
n the estimated risk becomes

R(m,D,N) ZL (yis i (x2)) (6.61)
where f! (x) = P(x, f(D_i, m)). This requires fitting the model N times, where for f,.* we
omit the 7'th training case. Fortunately, for some model classes and loss functions (namely linear

models and quadratic loss), we can fit the model once, and analytically “remove” the effect of
the 4'th training case. This is known as generalized cross validation or GCV.

Example: using CV to pick X for ridge regression

As a concrete example, consider picking the strength of the /5 regularizer in penalized linear
regression. We use the following rule:

A= arg _ min R(\, Dirain, K) (6.62)

where [Amin, Amaz] is a finite range of A values that we search over, and R(\, Dyyain, K) is the
K-fold CV estimate of the risk of using A, given by

R()\a Dtrain7 K E E yza f)\ Xz (663)
|Dtra1n‘ k=1ieD
1€Dy,

where f¥(x) = xTWy(D_}) is the prediction function trained on data excluding fold %, and
W (D) = argming NLL(w, D)+ \||w||3 is the MAP estimate. Figure 6.6(b) gives an example
of a CV estimate of the risk vs log(\), where the loss function is squared error.

When performing classification, we usually use 0-1 loss. In this case, we optimize a convex
upper bound on the empirical risk to estimate wym but we optimize (the CV estimate of) the
risk itself to estimate A\. We can handle the non-smooth 0-1 loss function when estimating A
because we are using brute-force search over the entire (one-dimensional) space.

When we have more than one or two tuning parameters, this approach becomes infeasible.
In such cases, one can use empirical Bayes, which allows one to optimize large numbers of
hyper-parameters using gradient-based optimizers instead of brute-force search. See Section 5.6
for details.

6.5.3.2

208 Chapter 6. Frequentist statistics

mean squared error 5-fold cross validation, ntrain = 50

=} - train mse P
—— test mse K 18
.

mse

0 L L L , 0 I I |
-25 —% -15 -10 * -5 % 5 -15 -10 5 0 5

log lambda log lambda

() (b)

Figure 6.6 (a) Mean squared error for {2 penalized degree 14 polynomial regression vs log regularizer.
Same as in Figures 7.8, except now we have N = 50 training points instead of 21. The stars correspond
to the values used to plot the functions in Figure 7.7. (b) CV estimate. The vertical scale is truncated for
clarity. The blue line corresponds to the value chosen by the one standard error rule. Figure generated by
linregPolyVsRegDemo.

The one standard error rule

The above procedure estimates the risk, but does not give any measure of uncertainty. A
standard frequentist measure of uncertainty of an estimate is the standard error of the mean,
defined by

- =2
se= =4/ L (6.64)
VW
where 62 is an estimate of the variance of the loss:
1Y . 1 Y
§* = N > (Li—I)* Li=L(y, fil"(xi)) L= N > Li (6.65)
i=1 i=1

Note that o measures the intrinsic variability of L; across samples, whereas se measures our
uncertainty about the mean L.

Suppose we apply CV to a set of models and compute the mean and se of their estimated
risks. A common heuristic for picking a model from these noisy estimates is to pick the value
which corresponds to the simplest model whose risk is no more than one standard error above
the risk of the best model; this is called the one-standard error rule (Hastie et al. 2001, p216).
For example, in Figure 6.6, we see that this heuristic does not choose the lowest point on the
curve, but one that is slightly to its right, since that corresponds to a more heavily regularized
model with essentially the same empirical performance.

6.5.3.3

6.5.4

6.5. Empirical risk minimization 209

CV for model selection in non-probabilistic unsupervised learning

If we are performing unsupervised learning, we must use a loss function such as L(x, §(x)) =
||x — §(x)]||2, which measures reconstruction error. Here 6(x) is some encode-decode scheme.
However, as we discussed in Section 11.5.2, we cannot use CV to determine the complexity of 4,
since we will always get lower loss with a more complex model, even if evaluated on the test set.
This is because more complex models will compress the data less, and induce less distortion.
Consequently, we must either use probabilistic models, or invent other heuristics.

Upper bounding the risk using statistical learning theory *

The principle problem with cross validation is that it is slow, since we have to fit the model
multiple times. This motivates the desire to compute analytic approximations or bounds to
the generalization error. This is the studied in the field of statistical learning theory (SLT).
More precisely, SLT tries to bound the risk R(p., h) for any data distribution p, and hypothesis
h € H in terms of the empirical risk Re,,,,(D, h), the sample size N = |D|, and the size of the
hypothesis space .

Let us initially consider the case where the hypothesis space is finite, with size dim(H) = |H]|.
In other words, we are selecting a model/ hypothesis from a finite list, rather than optimizing
real-valued parameters, Then we can prove the following.

Theorem 6.5.1. For any data distribution p., and any dataset D of size N drawn from p,., the
probability that our estimate of the error rate will be more than € wrong, in the worst case, is upper

bounded as follows:

P <€lna£l< |Remp(D, h) — R(ps, h)| > e) < 2dim(’;’-l)e_2N62 (6.66)
€

Proof. To prove this, we need two useful results. First, Hoeffding’s inequality, which states that
if X1,..., Xy ~ Ber(0), then, for any ¢ > 0,

P(|T— 0] > €) < 2e2N¢ (6.67)

where T = % Zi\;l x;. Second, the union bound, which says that if A;,..., A are a set of
events, then P(U{_; A;) < Z?Zl P(A;).

Finally, for notational brevity, let R(h) = R(h, p.) be the true risk, and Ry (h) = Remp(D, h)
be the empirical risk.

Using these results we have

P <%§ |Ry(R) — R(h)| > e> = P < U 1Bx(h) = R(h)| > e) (6.68)

heH

< Y P (|RN(h) — R(h)| > e) (6.69)
heH
< 3 2e7V = 2dim(H)e N (6.70)

heH

6.5.5

210 Chapter 6. Frequentist statistics

O

Ths bound tells us that the optimism of the training error increases with dim(#) but de-
creases with N = |D|, as is to be expected.

If the hypothesis space H is infinite (e.g., we have real-valued parameters), we cannot use
dim(#) = |H|. Instead, we can use a quantity called the Vapnik-Chervonenkis or VC dimen-
sion of the hypothesis class. See (Vapnik 1998) for details.

Stepping back from all the theory, the key intuition behind statistical learning theory is quite
simple. Suppose we find a model with low empirical risk. If the hypothesis space H is very
big, relative to the data size, then it is quite likely that we just got “lucky” and were given a
data set that is well-modeled by our chosen function by chance. However, this does not mean
that such a function will have low generalization error. But if the hypothesis class is sufficiently
constrained in size, and/or the training set is sufficiently large, then we are unlikely to get lucky
in this way, so a low empirical risk is evidence of a low true risk.

Note that optimism of the training error does not necessarily increase with model complexity,
but it does increase with the number of different models that are being searched over.

The advantage of statistical learning theory compared to CV is that the bounds on the risk
are quicker to compute than using CV. The disadvantage is that it is hard to compute the VC
dimension for many interesting models, and the upper bounds are usually very loose (although
see (Kaariainen and Langford 2005)).

One can extend statistical learning theory by taking computational complexity of the learner
into account. This field is called computational learning theory or COLT. Most of this work
focuses on the case where h is a binary classifier, and the loss function is 0-1 loss. If we observe
a low empirical risk, and the hypothesis space is suitably “small”, then we can say that our
estimated function is probably approximately correct or PAC. A hypothesis space is said to be
efficiently PAC-learnable if there is a polynomial time algorithm that can identify a function
that is PAC. See (Kearns and Vazirani 1994) for details.

Surrogate loss functions

Minimizing the loss in the ERM/ RRM framework is not always easy. For example, we might
want to optimize the AUC or Fl scores. Or more simply, we might just want to minimize the 0-1
loss, as is common in classification. Unfortunately, the 0-1 risk is a very non-smooth objective
and hence is hard to optimize. One alternative is to use maximum likelihood estimation instead,
since log-likelihood is a smooth convex upper bound on the 0-1 risk, as we show below.

To see this, consider binary logistic regression, and let y; € {—1,+1}. Suppose our decision
function computes the log-odds ratio,

ply = 1[xi, w) T

X;)=log—————"—— =wW'X;, =7; 6.71)
fxi) oy = —Lxi,w) !

Then the corresponding probability distribution on the output label is
p(yilxi, w) = sigm(yim;) (6.72)
Let us define the log-loss as as

Loy, n) = —logp(ylx, w) = log(1 +e™¥7) (6.73)

6.6

6.6. Pathologies of frequentist statistics * 211

3l — ()1
x\ = = = = hinge
== == |0gloss
2.5 \‘
.
&
‘0
2 N,
.
.
‘0
o
g1 %,
&
.
1 b
~
.”\
.
0.5 oW S -
.0 ~ —
.
ol N
.
2 15 -1 -05 0 0.5 1 15 2

Figure 6.7 [Illustration of various loss functions for binary classification. The horizontal axis is the margin
yn, the vertical axis is the loss. The log loss uses log base 2. Figure generated by hingeLossPlot.

It is clear that minimizing the average log-loss is equivalent to maximizing the likelihood.
Now consider computing the most probable label, which is equivalent to using § = —1 if
7; < 0and § = +1 if 7; > 0. The 0-1 loss of our function becomes

Loi(y,n) =Wy # 9) = I(yn < 0)

Figure 6.7 plots these two loss functions. We see that the NLL is indeed an upper bound on the
0-1 loss.
Log-loss is an example of a surrogate loss function. Another example is the hinge loss:

(6.74)

Lhinge(y’ n) = max(0,1 — yn) (6.75)
See Figure 6.7 for a plot. We see that the function looks like a door hinge, hence its name.
This loss function forms the basis of a popular classification method known as support vector
machines (SVM), which we will discuss in Section 14.5.

The surrogate is usually chosen to be a convex upper bound, since convex functions are easy
to minimize. See e.g., (Bartlett et al. 2006) for more information.

Pathologies of frequentist statistics *

I believe that it would be very difficult to persuade an intelligent person that current
[frequentist] statistical practice was sensible, but that there would be much less difficulty
with an approach via likelihood and Bayes’' theorem. — George Box, 1962.

Frequentist statistics exhibits various forms of weird and undesirable behaviors, known as
pathologies. We give a few examples below, in order to caution the reader; these and other
examples are explained in more detail in (Lindley 1972; Lindley and Phillips 1976; Lindley 1982;
Berger 1985; Jaynes 2003; Minka 1999).

6.6.1

212 Chapter 6. Frequentist statistics

Counter-intuitive behavior of confidence intervals

A confidence interval is an interval derived from the sampling distribution of an estimator
(whereas a Bayesian credible interval is derived from the posterior of a parameter, as we dis-
cussed in Section 5.2.2). More precisely, a frequentist confidence interval for some parameter ¢
is defined by the following (rather un-natural) expression:

C'(0) = (lu): PUD) <O <uD)D~0=1—-a (6.76)

That is, if we sample hypothetical future data D from 6, then (£(D),u(D)), is a confidence
interval if the parameter 0 lies inside this interval 1 — « percent of the time.

Let us step back for a moment and think about what is going on. In Bayesian statistics,
we condition on what is known — namely the observed data, D — and average over what
is not known, namely the parameter 6. In frequentist statistics, we do exactly the opposite:
we condition on what is unknown — namely the true parameter value § — and average over
hypothetical future data sets D.

This counter-intuitive definition of confidence intervals can lead to bizarre results. Consider
the following example from (Berger 1985, pll). Suppose we draw two integers D = (x1,x2) from

05 ifz=20
plzld)=4¢ 05 ifx=0+1 (6.77)
0 otherwise

If 6 = 39, we would expect the following outcomes each with probability 0.25:

(39, 39), (39,40), (40, 39), (40, 40) (6.78)
Let m = min(z1,x2) and define the following confidence interval:

[(D),u(D)] = [m,m] (6.79)
For the above samples this yields

[39,39], [39,39], [39,39], [40,40] (6.80)

Hence Equation 6.79 is clearly a 75% CI, since 39 is contained in 3/4 of these intervals. However,
if D = (39,40) then p(f = 39|D) = 1.0, so we know that 6 must be 39, yet we only have 75%
“confidence” in this fact.

Another, less contrived example, is as follows. Suppose we want to estimate the parameter
of a Bernoulli distribution. Let T = Z Y, z; be the sample mean. The MLE is § = 7. An

approximate 95% confidence interval for a Bernoulli parameter is T+ 1.961/Z(1 — T)/N (this is
called a Wald interval and is based on a Gaussian approximation to the Binomial distribution;
compare to Equation 3.27). Now consider a single trial, where N = 1 and x; = 0. The MLE
is 0, which overfits, as we saw in Section 3.3.4.1. But our 95% confidence interval is also (0, 0),
which seems even worse. It can be argued that the above flaw is because we approximated
the true sampling distribution with a Gaussian, or because the sample size was to small, or the
parameter “too extreme”. However, the Wald interval can behave badly even for large N, and
non-extreme parameters (Brown et al. 2001).

6.6.2

6.6. Pathologies of frequentist statistics * 213

p-values considered harmful

Suppose we want to decide whether to accept or reject some baseline model, which we will
call the null hypothesis. We need to define some decision rule. In frequentist statistics, it
is standard to first compute a quantity called the p-value, which is defined as the probability
(under the null) of observing some test statistic f(D) (such as the chi-squared statistic) that is
as large or larger than that actually observed:’

pvalue(D) £ P(f(D) > f(D)|D ~ Hy) (6.81)

This quantity relies on computing a tail area probability of the sampling distribution; we give
an example of how to do this below.

Given the p-value, we define our decision rule as follows: we reject the null hypothesis iff the
p-value is less than some threshold, such as a = 0.05. If we do reject it, we say the difference
between the observed test statistic and the expected test statistic is statistically significant at
level . This approach is known as null hypothesis significance testing, or NHST.

This procedure guarantees that our expected type I (false positive) error rate is at most .
This is sometimes interpreted as saying that frequentist hypothesis testing is very conservative,
since it is unlikely to accidently reject the null hypothesis. But in fact the opposite is the case:
because this method only worries about trying to reject the null, it can never gather evidence
in favor of the null, no matter how large the sample size. Because of this, p-values tend to
overstate the evidence against the null, and are thus very “trigger happy”.

In general there can be huge differences between p-values and the quantity that we really
care about, which is the posterior probability of the null hypothesis given the data, p(Hy|D).
In particular, Sellke et al. (2001) show that even if the p-value is as slow as 0.05, the posterior
probability of Hj is at least 30%, and often much higher. So frequentists often claim to have
“significant” evidence of an effect that cannot be explained by the null hypothesis, whereas
Bayesians are usually more conservative in their claims. For example, p-values have been used
to “prove” that ESP (extra-sensory perception) is real (Wagenmakers et al. 2011), even though ESP
is clearly very improbable. For this reason, p-values have been banned from certain medical
journals (Matthews 1998).

Another problem with p-values is that their computation depends on decisions you make
about when to stop collecting data, even if these decisions don’t change the data you actually
observed. For example, suppose I toss a coin n = 12 times and observe s = 9 successes (heads)
and f = 3 failures (tails), so n = s + f. In this case, n is fixed and s (and hence f) is random.
The relevant sampling model is the binomial

Bin(s|n, 0) = C”) 65(1 —)"~ (6.82)

Let the null hypothesis be that the coin is fair, & = 0.5, where 6 is the probability of success
(heads). The one-sided p-value, using test statistic t(s) = s, is

12 12
12
p1=P(S>9/Hy) =) Bin(s[12,0.5) = » ())0.512 =0.073 (6.83)
s=9 s=9

5. The reason we cannot just compute the probability of the observed value of the test statistic is that this will have
probability zero under a pdf. The p-value is defined in terms of the cdf, so is always a number between 0 and 1.

6.6.3

214 Chapter 6. Frequentist statistics

The two-sided p-value is

12 3
p2 =Y Bin(s[12,0.5) + > Bin(s]12,0.5) = 0.073 + 0.073 = 0.146 (6.84)
s=9 s=0

In either case, the p-value is larger than the magical 5% threshold, so a frequentist would not
reject the null hypothesis.

Now suppose I told you that T actually kept tossing the coin until I observed f = 3 tails. In
this case, f is fixed and n (and hence s = n — f) is random. The probability model becomes
the negative binomial distribution, given by

-1
NegBinom(s|f, 0) = (‘HJ;f :)95(1 - (6.85)
where f =n —s.

Note that the term which depends on @ is the same in Equations 6.82 and 6.85, so the
posterior over # would be the same in both cases. However, these two interpretations of the
same data give different p-values. In particular, under the negative binomial model we get

ps = P(S > 9|Hy) = i (3 + ; N 1) (1/2)°(1/2)% = 0.0327 (6.86)
5=9

So the p-value is 3%, and suddenly there seems to be significant evidence of bias in the coin!
Obviously this is ridiculous: the data is the same, so our inferences about the coin should be
the same. After all, I could have chosen the experimental protocol at random. It is the outcome
of the experiment that matters, not the details of how I decided which one to run.

Although this might seem like just a mathematical curiosity, this also has significant practical
implications. In particular, the fact that the stopping rule affects the computation of the p-
value means that frequentists often do not terminate experiments early, even when it is obvious
what the conclusions are, lest it adversely affect their statistical analysis. If the experiments are
costly or harmful to people, this is obviously a bad idea. Perhaps it is not surprising, then, that
the US Food and Drug Administration (FDA), which regulates clinical trials of new drugs, has
recently become supportive of Bayesian methods®, since Bayesian methods are not affected by
the stopping rule.

The likelihood principle

The fundamental reason for many of these pathologies is that frequentist inference violates
the likelihood principle, which says that inference should be based on the likelihood of the
observed data, not based on hypothetical future data that you have not observed. Bayes obviously
satisfies the likelihood principle, and consequently does not suffer from these pathologies.

A compelling argument in favor of the likelihood principle was presented in (Birnbaum 1962),
who showed that it followed automatically from two simpler principles. The first of these is the
sufficiency principle, which says that a sufficient statistic contains all the relevant information

6. See http://yamlb.wordpress.com/2006/06/19/the-us-fda-is-becoming-progressively-more-bayes
ian/.

6.6.4

6.6. Pathologies of frequentist statistics * 215

about an unknown parameter (arguably this is true by definition). The second principle is
known as weak conditionality, which says that inferences should be based on the events that
happened, not which might have happened. To motivate this, consider an example from (Berger
1985). Suppose we need to analyse a substance, and can send it either to a laboratory in New
York or in California. The two labs seem equally good, so a fair coin is used to decide between
them. The coin comes up heads, so the California lab is chosen. When the results come back,
should it be taken into account that the coin could have come up tails and thus the New York
lab could have been used? Most people would argue that the New York lab is irrelevant, since
the tails event didn't happen. This is an example of weak conditionality. Given this principle,
one can show that all inferences should only be based on what was observed, which is in
contrast to standard frequentist procedures. See (Berger and Wolpert 1988) for further details on
the likelihood principle.

Why isn’t everyone a Bayesian?

Given these fundamental flaws of frequentist statistics, and the fact that Bayesian methods
do not have such flaws, an obvious question to ask is: “Why isn't everyone a Bayesian?” The
(frequentist) statistician Bradley Efron wrote a paper with exactly this title (Efron 1986). His short
paper is well worth reading for anyone interested in this topic. Below we quote his opening
section:

The title is a reasonable question to ask on at least two counts. First of all, everone used
to be a Bayesian. Laplace wholeheatedly endorsed Bayes's formulation of the inference
problem, and most 19th-century scientists followed suit. This included Gauss, whose
statistical work is usually presented in frequentist terms.

A second and more important point is the cogency of the Bayesian argument. Modern
statisticians, following the lead of Savage and de Finetti, have advanced powerful theoret-
ical arguments for preferring Bayesian inference. A byproduct of this work is a disturbing
catalogue of inconsistencies in the frequentist point of view.

Nevertheless, everyone is not a Bayesian. The current era (1986) is the first century in
which statistics has been widely used for scientific reporting, and in fact, 20th-century
statistics is mainly non-Bayesian. However, Lindley (1975) predicts a change for the 2lst
century.

Time will tell whether Lindley was right....

Exercises

Exercise 6.1 Pessimism of LOOCV

(Source: Witten05, p152.). Suppose we have a completely random labeled dataset (i.e., the features x tell us
nothing about the class labels y) with N1 examples of class 1, and N2 examples of class 2, where N1 = No.
What is the best misclassification rate any method can achieve? What is the estimated misclassification
rate of the same method using LOOCV?

Exercise 6.2 James Stein estimator for Gaussian means

Consider the 2 stage model Y;|0; ~ N (0;,02) and ;| ~ N (mo, 73). Suppose o> = 500 is known and
we observe the following 6 data points, i = 1 : 6:

216 Chapter 6. Frequentist statistics

1505, 1528, 1564, 1498, 1600, 1470

a. Find the ML-II estimates of mg and 7¢.

b. Find the posterior estimates E [0;|y;, mo,70] and var [0;|y;, mo, 0] for @ = 1. (The other terms,
1 =2: 6, are computed similarly.)

c. Give a 95% credible interval for p(6;|y;, mo, 7o) for i = 1. Do you trust this interval (assuming the
Gaussian assumption is reasonable)? i.e. is it likely to be too large or too small, or just right?

d. What do you expect would happen to your estimates if o> were much smaller (say o> = 1)2 You do
not need to compute the numerical answer; just briefly explain what would happen qualitatively, and
why.

Exercise 6.3 63, is biased

Show that 63,5 = + Zle(mn — j1)? is a biased estimator of o2, i.e., show

Ele»anNN’(uﬁ) [&Z(Xla v >Xn) # o’

Hint: note that Xi,..., Xy are independent, and use the fact that the expectation of a product of
independent random variables is the product of the expectations.

Exercise 6.4 Estimation of o when p is known

Suppose we sample z1,...,zn ~ N (g, 02) where p is a known constant. Derive an expression for the
MLE for o2 in this case. Is it unbiased?

7.1

7.2

7.3

Linear regression

Introduction

Linear regression is the “work horse” of statistics and (supervised) machine learning. When
augmented with kernels or other forms of basis function expansion, it can model also non-
linear relationships. And when the Gaussian output is replaced with a Bernoulli or multinoulli
distribution, it can be used for classification, as we will see below. So it pays to study this model
in detail.

Model specification

As we discussed in Section 1.4.5, linear regression is a model of the form
plylx,8) = N(ylw'x,0%))
Linear regression can be made to model non-linear relationships by replacing x with some
non-linear function of the inputs, ¢(x). That is, we use
pylx, 0) = N(ylw" $(x),0°) (7.2)

This is known as basis function expansion. (Note that the model is still linear in the parameters
w, so it is still called linear regression; the importance of this will become clear below.) A simple
example are polynomial basis functions, where the model has the form

o(z) =[1,z,2%,...,29 (7.3)

Figure 118 illustrates the effect of changing d: increasing the degree d allows us to create
increasingly complex functions.

We can also apply linear regression to more than 1 input. For example, consider modeling
temperature as a function of location. Figure 7.1(a) plots E [y|x] = wy + wiz1 + wazs, and

Figure 7.1(b) plots E [y|x] = wo + w121 + wawa + w3z? + wyxs.

Maximum likelihood estimation (least squares)

A common way to esitmate the parameters of a statistical model is to compute the MLE, which
is defined as

02 arg max log p(D|6) (7.4)

218 Chapter 7. Linear regression

(@) (b)

Figure 7.1 Linear regression applied to 2d data. Vertical axis is temperature, horizontal axes are location
within a room. Data was collected by some remote sensing motes at Intel's lab in Berkeley, CA (data
courtesy of Romain Thibaux). (a) The fitted plane has the form f(x) = wg + wix1 + waza. (b)
Temperature data is fitted with a quadratic of the form f(x) = wo + wir1 + woxs + 7.U31‘% + wuc%.
Produced by surfaceFitDemo.

It is common to assume the training examples are independent and identically distributed,
commonly abbreviated to iid. This means we can write the log-likelihood as follows:

N
£(6) £ 1ogp(D|6) = > log p(y[x;,) (7.5)
1=1

Instead of maximizing the log-likelihood, we can equivalently minimize the negative log likeli-
hood or NLL:

N
NLL(9) £ = "logp(yilxi, 0) (7.6)
=1

The NLL formulation is sometimes more convenient, since many optimization software packages
are designed to find the minima of functions, rather than maxima.

Now let us apply the method of MLE to the linear regression setting. Inserting the definition
of the Gaussian into the above, we find that the log likelihood is given by

N 1
_ Y - wTx)?
00) = ; log l<2ﬂ'02> exp (5,2 (i —w' x;))] (7.7)
_ 1 N 2
= T‘ZRSS(W) 5 log(2mo®) (7.8)
RSS stands for residual sum of squares and is defined by
N
RSS(w) = Z(yz —wlx;)? (7.9)
i=1

The RSS is also called the sum of squared errors, or SSE, and SSE/N is called the mean
squared error or MSE. It can also be written as the square of the 5 norm of the vector of

7.3.1

7.3. Maximum likelihood estimation (least squares) 219

Sum of squares error contours for linear regression

prediction
©ootruth

Figure 7.2 (a) In linear least squares, we try to minimize the sum of squared distances from each training
point (denoted by a red circle) to its approximation (denoted by a blue cross), that is, we minimize the
sum of the lengths of the little vertical blue lines. The red diagonal line represents §(x) = wo + w1z,
which is the least squares regression line. Note that these residual lines are not perpendicular to the least
squares line, in contrast to Figure 12.5. Figure generated by residualsDemo. (b) Contours of the RSS error
surface for the same example. The red cross represents the MLE, w = (1.45,0.93). Figure generated by
contoursSSEdemo.

residual errors:

N
RSS(w) = ||€||3 = Zef (7.10)
i=1

where ¢; = (y; — w’x;).

We see that the MLE for w is the one that minimizes the RSS, so this method is known
as least squares. This method is illustrated in Figure 7.2(a). The training data (z;,y;) are
shown as red circles, the estimated values (x;, ¢;) are shown as blue crosses, and the residuals
€; = Y; — U; are shown as vertical blue lines. The goal is to find the setting of the parameters
(the slope w; and intercept wq) such that the resulting red line minimizes the sum of squared
residuals (the lengths of the vertical blue lines).

In Figure 7.2(b), we plot the NLL surface for our linear regression example. We see that it is a
quadratic “bowl” with a unique minimum, which we now derive. (Importantly, this is true even
if we use basis function expansion, such as polynomials, because the NLL is still linear in the
parameters w, even if it is not linear in the inputs x.)

Derivation of the MLE

First, we rewrite the objective in a form that is more amenable to differentiation:

NLL(w) — %(y — Xw)"(y — Xw) = %WT(XTX)W _wT(XTy) an

7.3.2

220 Chapter 7. Linear regression

where
2 . .
N N Li1 ©tr Xi1TiD
XTX =) xx{ =) 7.12)
i=1 i=1 2
K2 3 ‘,I/.7,7D1.1,1 oo x’L D

is the sum of squares matrix and
N
X"y =" xiyi. (7.13)
i=1
Using results from Equation 4.10, we see that the gradient of this is given by
N
gw) = [X'Xw-X"y]=> xi(w'x; —) (7.14)
i=1

Equating to zero we get
XT'Xw = X'y (7.15)

This is known as the normal equation. The corresponding solution W to this linear system of
equations is called the ordinary least squares or OLS solution, which is given by

wors = (XTX)" X"y (7.16)

Geometric interpretation

This equation has an elegant geometrical intrepretation, as we now explain. We assume N > D,
so we have more examples than features. The columns of X define a linear subspace of
dimensionality D which is embedded in N dimensions. Let the j'th column be X;, which is
a vector in RY. (This should not be confused with x; € R, which represents the i'th data
case.) Similarly, y is a vector in R”. For example, suppose we have N = 3 examples in D = 2
dimensions:

1 2 8.8957
X=(1 -2], y=10.6130 (7.17)
1 2 1.7761

These vectors are illustrated in Figure 7.3.
We seek a vector y € R¥ that lies in this linear subspace and is as close as possible to y,
i.e., we want to find

argmin ly — ¥l (7.18)
yespan({X1,....Xp})

Since y € span(X), there exists some weight vector w such that

Yy =wiX1 + -+ wpXp = Xw (7.19)

7.3.3

7.3. Maximum likelihood estimation (least squares) 221

Figure 7.3 Graphical interpretation of least squares for N = 3 examples and D = 2 features. X; and
%o are vectors in R3; together they define a 2D plane. y is also a vector in R® but does not lie on this
2D plane. The orthogonal projection of y onto this plane is denoted y. The red line from y to y is
the residual, whose norm we want to minimize. For visual clarity, all vectors have been converted to unit
norm. Figure generated by leastSquaresProjection.

To minimize the norm of the residual, y — y, we want the residual vector to be orthogonal to
every column of X, so i]T(y —y)=0for j =1:D. Hence

i?(y —9)=0=>XT(y-Xw)=0=>w=(X"X)"'XTy (7.20)
Hence our projected value of y is given by
y = Xw = X(XTX) X"y (7.21)

This corresponds to an orthogonal projection of y onto the column space of X. The projection
matrix P = X(XTX)~1X7 is called the hat matrix, since it “puts the hat on y”.

Convexity

When discussing least squares, we noted that the NLL had a bowl shape with a unique minimum.
The technical term for functions like this is convex. Convex functions play a very important
role in machine learning.

Let us define this concept more precisely. We say a set S is convex if for any 8,0’ € S, we
have

N+ (1-N)0 €S8, VAe[0,1] (7.22)

222 Chapter 7. Linear regression

(@) (b)

Figure 7.4 (a) llustration of a convex set. (b) Hllustration of a nonconvex set.

b) RSP
(o]

Figure 7.5 (a) lllustration of a convex function. We see that the chord joining (z, f(z)) to (y, f(y)) lies
above the function. (b) A function that is neither convex nor concave. A is a local minimum, B is a global
minimum. Figure generated by convexFnHand.

That is, if we draw a line from @ to ', all points on the line lie inside the set. See Figure 7.4(a)
for an illustration of a convex set, and Figure 7.4(b) for an illustration of a non-convex set.

A function f(0) is called convex if its epigraph (the set of points above the function) defines
a convex set. Equivalently, a function f(0) is called convex if it is defined on a convex set and
if, for any 6, 6’ € S, and for any 0 < A <1, we have

FOO+ (1 —=X)0") < Af(0)+ (1—N)f(0) (7.23)

See Figure 7.5 for a 1d example. A function is called strictly convex if the inequality is strict. A
function f(0) is concave if —f(8) is convex. Examples of scalar convex functions include 62,
e?, and @log @ (for § > 0). Examples of scalar concave functions include log(#) and /6.

Intuitively, a (strictly) convex function has a “bowl shape”, and hence has a unique global
minimum 6* corresponding to the bottom of the bowl. Hence its second derivative must be
positive everywhere, d% f(0) > 0. A twice-continuously differentiable, multivariate function f is
convex iff its Hessian is positive definite for all 8.! In the machine learning context, the function
f often corresponds to the NLL.

2
1. Recall that the Hessian is the matrix of second partial derivatives, defined by Hj;, = %. Also, recall that a
J

matrix H is positive definite iff v Hv > 0 for any non-zero vector v.

7.4

7.4. Robust linear regression * 223

Linear data with noise and outliers

—EO— least squares ol
3t = -EF - laplace PR : !
O Et-
L o e g

. . . L \
0 0.2 0.4 0.6 0.8 1 -3 -2 -1 0 1 2 3

(@) (b)

Figure 7.6 (a) Illustration of robust linear regression. Figure generated by linregRobustDemoCombined.
(b) Mustration of ¢, ¢1, and Huber loss functions. Figure generated by huberLossDemo.

Models where the NLL is convex are desirable, since this means we can always find the
globally optimal MLE. We will see many examples of this later in the book. However, many
models of interest will not have concave likelihoods. In such cases, we will discuss ways to
derive locally optimal parameter estimates.

Robust linear regression *

It is very common to model the noise in regression models using a Gaussian distribution
with zero mean and constant variance, ¢; ~ N'(0,0?), where ¢; = y; — w’x;. In this case,
maximizing likelihood is equivalent to minimizing the sum of squared residuals, as we have
seen. However, if we have outliers in our data, this can result in a poor fit, as illustrated in
Figure 7.6(a). (The outliers are the points on the bottom of the figure.) This is because squared
error penalizes deviations quadratically, so points far from the line have more affect on the fit
than points near to the line.

One way to achieve robustness to outliers is to replace the Gaussian distribution for the
response variable with a distribution that has heavy tails. Such a distribution will assign higher
likelihood to outliers, without having to perturb the straight line to “explain” them.

One possibility is to use the Laplace distribution, introduced in Section 2.4.3. If we use this
as our observation model for regression, we get the following likelihood:

1
plyPe,w,b) = Lap(ylw"x,b) oc exp(— |y — wx]) (7.24)

The robustness arises from the use of |y — w” x| instead of (y — w”'x)2. For simplicity, we will

assume b is fixed. Let ; £ y; — wT'x; be the 7'th residual. The NLL has the form

U(w) = Z ri(w)] (7.25)

224 Chapter 7. Linear regression

Likelihood Prior Name Section
Gaussian Uniform Least squares 7.3

Gaussian ~ Gaussian Ridge 7.5

Gaussian ~ Laplace Lasso 13.3

Laplace Uniform Robust regression 7.4

Student Uniform Robust regression Exercise 11.12

Table 7.1 Summary of various likelihoods and priors used for linear regression. The likelihood refers to
the distributional form of p(y|x, w,o?), and the prior refers to the distributional form of p(w). MAP
estimation with a uniform distribution corresponds to MLE.

Unfortunately, this is a non-linear objective function, which is hard to optimize. Fortunately, we
can convert the NLL to a linear objective, subject to linear constraints, using the following split
variable trick. First we define

re &t o (7.26)

and then we impose the linear inequality constraints that 7~ > 0 and r; > 0. Now the
constrained objective becomes
min (rit — ;) s.t. ri+ >0,r; > 0,wix; + rj' +r; =y (7.27)

w,rt r— <=
1

This is an example of a linear program with D + 2N unknowns and 3V constraints.
Since this is a convex optimization problem, it has a unique solution. To solve an LP, we must
first write it in standard form, which as follows:

min 70 st. A@<b, A,,0 =b., 1<0<u (7.28)
In our current example, & = (w,r",r7), f = [0,1,1], A =[, b =[], A, = [X,I,-1],
beg =y, 1 =[-001,0,0], u = [|. This can be solved by any LP solver (see e.g., (Boyd and

Vandenberghe 2004)). See Figure 7.6(a) for an example of the method in action.
An alternative to using NLL under a Laplace likelihood is to minimize the Huber loss function
(Huber 1964), defined as follows:

B r?/2 if |r| <46
La(r,0) = {5|r| Z82)2 il >0 (7.29)

This is equivalent to /5 for errors that are smaller than 9, and is equivalent to ¢; for larger errors.
See Figure 7.6(b). The advantage of this loss function is that it is everywhere differentiable,
using the fact that -|r| = sign(r) if 7 # 0. We can also check that the function is C}
continuous, since the gradients of the two parts of the function match at r = +4, namely
C%,L w(r,0)|lr=s = J. Consequently optimizing the Huber loss is much faster than using the
Laplace likelihood, since we can use standard smooth optimization methods (such as quasi-
Newton) instead of linear programming.

Figure 7.6(a) gives an illustration of the Huber loss function. The results are qualitatively
similiar to the probabilistic methods. (In fact, it turns out that the Huber method also has a
probabilistic interpretation, although it is rather unnatural (Pontil et al. 1998).)

7.5

7.5.1

7.5. Ridge regression 225

In lambda ~20.135 In lambda -8.571

(@) (b)

Figure 7.7 Degree 14 Polynomial fit to N = 21 data points with increasing amounts of ¢ regularization.
Data was generated from noise with variance o = 4. The error bars, representing the noise variance o2,
get wider as the fit gets smoother, since we are ascribing more of the data variation to the noise. Figure
generated by linregPolyVsRegDemo.

Ridge regression

One problem with ML estimation is that it can result in overfitting. In this section, we discuss a
way to ameliorate this problem by using MAP estimation with a Gaussian prior. For simplicity,
we assume a Gaussian likelihood, rather than a robust likelihood.

Basic idea

The reason that the MLE can overfit is that it is picking the parameter values that are the
best for modeling the training data; but if the data is noisy, such parameters often result in
complex functions. As a simple example, suppose we fit a degree 14 polynomial to N = 21 data
points using least squares. The resulting curve is very “wiggly”, as shown in Figure 7.7(a). The
corresponding least squares coefficients (excluding wq) are as follows:

6.560, -36.934, -109.255, 543.452, 1022.561, -3046.224, -3768.013,
8524 .540, 6607.897, -12640.058, -5530.188, 9479.730, 1774.639, -2821.526

We see that there are many large positive and negative numbers. These balance out exactly
to make the curve “wiggle” in just the right way so that it almost perfectly interpolates the data.
But this situation is unstable: if we changed the data a little, the coefficients would change a lot.

We can encourage the parameters to be small, thus resulting in a smoother curve, by using a
zero-mean Gaussian prior:

p(w) = [N (w,l0,7%) (7.30)
J

where 1/72 controls the strength of the prior. The corresponding MAP estimation problem
becomes
N D
argmax Z log N (y;|wo + wl'x;,0%) + Z log N (w;]0, %) (7.3D)
W= j=1

226 Chapter 7. Linear regression

mean squared error o.

25 —& negative log marg. likelinood
=} - train mse
—3— test mse

- -X- - CV estimate of MSE

log lambda log lambda

(@ (b)

Figure 7.8 (a) Training error (dotted blue) and test error (solid red) for a degree 14 polynomial fit by
ridge regression, plotted vs log()). Data was generated from noise with variance o = 4 (training set
has size N = 21). Note: Models are ordered from complex (small regularizer) on the left to simple (large
regularizer) on the right. The stars correspond to the values used to plot the functions in Figure 7.7. (b)
Estimate of performance using training set. Dotted blue: 5-fold cross-validation estimate of future MSE.
Solid black: negative log marginal likelihood, —log p(D|\). Both curves have been vertically rescaled to
[0,]] to make them comparable. Figure generated by linregPolyVsRegDemo.

It is a simple exercise to show that this is equivalent to minimizing the following:
| XN
J0) = 7 301 =)+ 732
=
where A £ 02 /7% and ||w||3 = > w? = w''w is the squared two-norm. Here the first term is

the MSE/ NLL as usual, and the second term, A > 0, is a complexity penalty. The corresponding
solution is given by

Widge = (Mp + XTX) !XTy (7.33)

This technique is known as ridge regression, or penalized least squares. In general, adding
a Gaussian prior to the parameters of a model to encourage them to be small is called /5
regularization or weight decay. Note that the offset term wy is not regularized, since this just
affects the height of the function, not its complexity. By penalizing the sum of the magnitudes
of the weights, we ensure the function is simple (since w = 0 corresponds to a straight line,
which is the simplest possible function, corresponding to a constant.)

We illustrate this idea in Figure 7.7, where we see that increasing A results in smoother
functions. The resulting coefficients also become smaller. For example, using A = 1073, we
have

7.5.2

7.5. Ridge regression 227

2.128, 0.807, 16.457, 3.704, -24.948, -10.472, -2.625, 4.360, 13.711,
10.063, 8.716, 3.966, -9.349, -9.232

In Figure 7.8(a), we plot the MSE on the training and test sets vs log(\). We see that, as we
increase A (so the model becomes more constrained), the error on the training set increases.
For the test set, we see the characteristic U-shaped curve, where the model overfits and then
underfits. Tt is common to use cross validation to pick A, as shown in Figure 7.8(b). In
Section 1.4.8, we will discuss a more probabilistic approach.

We will consider a variety of different priors in this book. Each of these corresponds to a
different form of regularization. This technique is very widely used to prevent overfitting.

Numerically stable computation *

Interestingly, ridge regression, which works better statistically, is also easier to fit numerically,
since (A\Ip + X7 X) is much better conditioned (and hence more likely to be invertible) than
XTX, at least for suitable largy \.

Nevertheless, inverting matrices is still best avoided, for reasons of numerical stability. (Indeed,
if you write w=inv(X? * X)*X’*y in Matlab, it will give you a warning.) We now describe
a useful trick for fitting ridge regression models (and hence by extension, computing vanilla
OLS estimates) that is more numerically robust. We assume the prior has the form p(w) =
N(0,A™"), where A is the precision matrix. In the case of ridge regression, A = (1/7%)I. To
avoid penalizing the wq term, we should center the data first, as explained in Exercise 7.5.

First let us augment the original data with some “virtual data” coming from the prior:

= (5%). o~ (32

where A = \/X\/XT is a Cholesky decomposition of A. We see that X is (N + D) x D,
where the extra rows represent pseudo-data from the prior.

We now show that the NLL on this expanded data is equivalent to penalized NLL on the
original data:

fw) = (¥ = Xw)'(y - Xw)) (7.35)
B (yt/)g> B <)\(//73> W) <<y(/)g) - (%/%T) W) (7.36)

(y - XW)> ! (;(X\;K);W)) (7.37)

A=

(v — Xw) ' (y — Xw) + (VAW)" (VAw) (7.38)

(y = Xw) T (y — Xw) + wlAw (7.39)

Hence the MAP estimate is given by
VAVTidge = (XTX)_le}N’ (7.40)

as we claimed.

7.5.3

228 Chapter 7. Linear regression

Now let
X =QR (7.41)

be the QR decomposition of X, where Q is orthonormal (meaning Q7 Q = QQ” = I), and
R is upper triangular. Then

(XTX)™' = (RTQTQR) ' = (RTR) ' =R'R 7 (7.42)
Hence
Wrigge = RTTRTTRTQTy = R7'Qy (7.43)

Note that R is easy to invert since it is upper triangular. This gives us a way to compute the
ridge estimate while avoiding having to invert (A + X7 X).

We can use this technique to find the MLE, by simply computing the QR decomposition of
the unaugmented matrix X, and using the original y. This is the method of choice for solving
least squares problems. (In fact, it is so sommon that it can be implemented in one line of
Matlab, using the backslash operator: w=X\y.) Note that computing the QR decomposition of
an N x D matrix takes O(NN D?) time, and is numerically very stable.

If D > N, we should first perform an SVD decomposition. In particular, let X = USV7 be
the SVD of X, where VI'V = Iy, UUT = UTU = Iy, and S is a diagonal N x N matrix.
Now let Z = UD be an N x N matrix. Then we can rewrite the ridge estimate thus:

Weidge = V(ZTZ+Ny)'Z7y (7.44)

In other words, we can replace the D-dimensional vectors x; with the N-dimensional vectors
z; and perform our penalized fit as before. We then transform the /N-dimensional solution
to the D-dimensional solution by multiplying by V. Geometrically, we are rotating to a new
coordinate system in which all but the first N coordinates are zero. This does not affect the
solution since the spherical Gaussian prior is rotationally invariant. The overall time is now
O(DN?) operations.

Connection with PCA *

In this section, we discuss an interesting connection between ridge regression and PCA (Sec-
tion 12.2), which gives further insight into why ridge regression works well. Our discussion is
based on (Hastie et al. 2009, p66).

Let X = USVT be the SVD of X. From Equation 7.44, we have

Weidge = V(S? + AXI)71SUTy (7.45)
Hence the ridge predictions on the training set are given by

v = XWrigge = USVIV(S? +AI)"'SUTy (7.46)

D
= USU"y=> u;S;uly (7.47)
j=1

7.5. Ridge regression 229

L ML Estimate

* MAP Estimate

S

X prior mean

Figure 7.9 Geometry of ridge regression. The likelihood is shown as an ellipse, and the prior is shown
as a circle centered on the origin. Based on Figure 3.15 of (Bishop 2006b). Figure generated by geomRidge

where
_ .) L o2
- J
Sij = [S(8+)78y, = P (7.48)

and o; are the singular values of X. Hence

D 2
A~ _ ~ _ Jj T
y = pridge = j§:1 u; 0_]2 +)\llj Yy (7.49)

In contrast, the least squares prediction is
D
y = Xw,=(USV')(VST'U"y) =UU"y =) wu]y (7.50)
j=1
If 0% is small compared to), then direction u; will not have much effect on the prediction. In
view of this, we define the effective number of degrees of freedom of the model as follows:
o*

2
_ J
dof(A) =))

j=1

(7.51)

When A = 0, dof(\) = D, and as A — oo, dof(\) — 0.

Let us try to understand why this behavior is desirable. In Section 7.6, we show that
cov [w|D] = 0?(XTX)~1, if we use a uniform prior for w. Thus the directions in which
we are most uncertain about w are determined by the eigenvectors of this matrix with the
smallest eigenvalues, as shown in Figure 4.1. Furthermore, in Section 12.2.3, we show that the
squared singular values O'J2- are equal to the eigenvalues of X7 X. Hence small singular values o
correspond to directions with high posterior variance. It is these directions which ridge shrinks

the most.

7.5.4

230 Chapter 7. Linear regression

This process is illustrated in Figure 7.9. The horizontal w; parameter is not-well determined
by the data (has high posterior variance), but the vertical wy parameter is well-determined.
Hence wh'*? is close to w5"¢, but w}"**" is shifted strongly towards the prior mean, which is 0.
(Compare to Figure 4.14(c), which illustrated sensor fusion with sensors of different reliabilities.)
In this way, ill-determined parameters are reduced in size towards 0. This is called shrinkage.

There is a related, but different, technique called principal components regression. The idea
is this: first use PCA to reduce the dimensionality to K dimensions, and then use these low
dimensional features as input to regression. However, this technique does not work as well as
ridge in terms of predictive accuracy (Hastie et al. 2001, p70). The reason is that in PC regression,
only the first K (derived) dimensions are retained, and the remaining D — K dimensions are
entirely ignored. By contrast, ridge regression uses a “soft” weighting of all the dimensions.

Regularization effects of big data

Regularization is the most common way to avoid overfitting. However, another effective approach
— which is not always available — is to use lots of data. It should be intuitively obvious that
the more training data we have, the better we will be able to learn.? So we expect the test set
error to decrease to some plateau as N increases.

This is illustrated in Figure 7.10, where we plot the mean squared error incurred on the test set
achieved by polynomial regression models of different degrees vs N (a plot of error vs training
set size is known as a learning curve). The level of the plateau for the test error consists of
two terms: an irreducible component that all models incur, due to the intrinsic variability of
the generating process (this is called the noise floor); and a component that depends on the
discrepancy between the generating process (the “truth”) and the model: this is called structural
error.

In Figure 7.10, the truth is a degree 2 polynomial, and we try fitting polynomials of degrees 1,
2 and 25 to this data. Call the 3 models M1, M5 and My5. We see that the structural error
for models Mo and Myj is zero, since both are able to capture the true generating process.
However, the structural error for M is substantial, which is evident from the fact that the
plateau occurs high above the noise floor.

For any model that is expressive enough to capture the truth (i.e., one with small structural
error), the test error will go to the noise floor as N — oo. However, it will typically go to
zero faster for simpler models, since there are fewer parameters to estimate. In particular, for
finite training sets, there will be some discrepancy between the parameters that we estimate
and the best parameters that we could estimate given the particular model class. This is called
approximation error, and goes to zero as N — o0, but it goes to zero faster for simpler
models. This is illustrated in Figure 7.10. See also Exercise 7.1.

In domains with lots of data, simple methods can work surprisingly well (Halevy et al. 2009).
However, there are still reasons to study more sophisticated learning methods, because there
will always be problems for which we have little data. For example, even in such a data-rich
domain as web search, as soon as we want to start personalizing the results, the amount of data
available for any given user starts to look small again (relative to the complexity of the problem).

2. This assumes the training data is randomly sampled, and we don’t just get repetitions of the same examples. Having
informatively sampled data can help even more; this is the motivation for an approach known as active learning, where
you get to choose your training data.

7.6

7.6. Bayesian linear regression 231
truth=degree 2, model = degree 1 truth=degree 2, model = degree 2
22 T T T T T T 22 T T T T T T
- L} - train
20l 20l ——test
18 18 4
16 161 4
14 14k 4
12k 4 2k 4
o o
8 8
£ £
10F 4 10 4
8r 4 L1 4
6F 4 6F 4
)) % PR
2F 4 of 4
o
% 20 40 60 80 100 120 140 160 180 200 % 20 40 60 80 100 120 140 160 180 200
size of training set size of training set
(@) (b)
truth=degree 2, model = degree 10 truth=degree 2, model = degree 25
22 T T T T T 22 T T T T T
- L} - train - Lz} - train
b ——test 20 ——test
18 b 18
16 4 16
14 4 14
12 4 12
@ @
& 8
E E
10 4 10
8 4 8
6 4 6
4 PTSRD) = = B 84;] 4
FRREE O SRl 13 R
2 "E' 4 2
ol I . . I . . ol ez &, . . I . I . .
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
size of training set size of training set
(c) @

Figure 7.10 MSE on training and test sets vs size of training set, for data generated from a degree 2
polynomial with Gaussian noise of variance o> = 4. We fit polynomial models of varying degree to this
data. (a) Degree 1. (b) Degree 2. (c) Degree 10. (d) Degree 25. Note that for small training set sizes, the test
error of the degree 25 polynomial is higher than that of the degree 2 polynomial, due to overfitting, but
this difference vanishes once we have enough data. Note also that the degree 1 polynomial is too simple
and has high test error even given large amounts of training data. Figure generated by 1inregPolyVsN.

In such cases, we may want to learn multiple related models at the same time, which is known
as multi-task learning. This will allow us to “borrow statistical strength” from tasks with lots of
data and to share it with tasks with little data. We will discuss ways to do later in the book.

Bayesian linear regression

Although ridge regression is a useful way to compute a point estimate, sometimes we want to
compute the full posterior over w and 2. For simplicity, we will initially assume the noise
variance o is known, so we focus on computing p(w|D, o). Then in Section 7.6.3 we consider

7.6.1

232 Chapter 7. Linear regression

the general case, where we compute p(w,o?|D). We assume throughout a Gaussian likelihood
model. Performing Bayesian inference with a robust likelihood is also possible, but requires more
advanced techniques (see Exercise 24.5).

Computing the posterior

In linear regression, the likelihood is given by
ply[X,w,p,0%) = N(ylu+Xw,o’Iy) (7.52)

1
x exp (—M(y —ply —Xw)(y — ply — Xw)) (7.53)

where 1 is an offset term. If the inputs are centered, so), z;; = 0 for each j, the mean of the
output is equally likely to be positive or negative. So let us put an improper prior on p of the
form p(p) o 1, and then integrate it out to get

1
1. w.0?) o exp (= gglly 7L~ X) 50

where 7 = vazl y; is the empirical mean of the output. For notational simplicity, we shall
assume the output has been centered, and write y for y — 71 .

The conjugate prior to the above Gaussian likelihood is also a Gaussian, which we will denote
by p(w) = N (w|wg, Vy). Using Bayes rule for Gaussians, Equation 4.125, the posterior is given
by

p(w|X,y,0%) x N(w|wo, Vo)N(y|Xw,o?Iy) = N(w|wy, V) (7.55)
1
wy = VyVi'we+ 5 VaXTy (7.56)
g
1
vyl o= Vil+ 5XTX (7.57)
g
Vy = o*(0? Vit +XTX)! (7.58)

If wo = 0 and Vy = 721, then the posterior mean reduces to the ridge estimate, if we define
A= Z—; This is because the mean and mode of a Gaussian are the same.

To gain insight into the posterior distribution (and not just its mode), let us consider a 1D
example:

y(z,w) = wo + wix + € (7.59)

where the “true” parameters are wy = —0.3 and w; = 0.5. In Figure 7.11 we plot the prior,
the likelihood, the posterior, and some samples from the posterior predictive. In particular,
the right hand column plots the function y(z, w(*)) where z ranges over [—1,1], and w(*) ~
N(w|wy, V) is a sample from the parameter posterior. Initially, when we sample from the
prior (first row), our predictions are “all over the place”, since our prior is uniform. After we see
one data point (second row), our posterior becomes constrained by the corresponding likelihood,
and our predictions pass close to the observed data. However, we see that the posterior has
a ridge-like shape, reflecting the fact that there are many possible solutions, with different

7.6.2

7.6. Bayesian linear regression 233

likelihood prior/posterior data space

1 1
-1 -1

|
o
-

|
o
-

|
-
o
—_

|
o
-

I
o
-

|
-
o
—_

|
o
-

|
o
-

WO WO X
1 1 1
A o+
w1 / wi Y o
.| -1 9 (@)
1 0 1 4 0 1 4 0 1
WO0 WO X

Figure 7.11 Sequential Bayesian updating of a linear regression model p(y|x) = N (y|wozo +wiz1, o?).
Row 0 represents the prior, row 1 represents the first data point (x1,y1), row 2 represents the second
data point (z2,y2), row 3 represents the 20th data point (z20,y20). Left column: likelihood function for
current data point. Middle column: posterior given data so far, p(W|X1:n, y1:n) (so the first line is the
prior). Right column: samples from the current prior/posterior predictive distribution. The white cross in
columns 1 and 2 represents the true parameter value; we see that the mode of the posterior rapidly (after
20 samples) converges to this point. The blue circles in column 3 are the observed data points. Based on
Figure 3.7 of (Bishop 2006a). Figure generated by bayesLinRegDemo2d.

slopes/intercepts. This makes sense since we cannot uniquely infer two parameters from one
observation. After we see two data points (third row), the posterior becomes much narrower,
and our predictions all have similar slopes and intercepts. After we observe 20 data points (last
row), the posterior is essentially a delta function centered on the true value, indicated by a white
cross. (The estimate converges to the truth since the data was generated from this model, and
because Bayes is a consistent estimator; see Section 6.4.1 for discussion of this point.)

Computing the posterior predictive

It's tough to make predictions, especially about the future. — Yogi Berra

7.6.3

7.6.3.1

234 Chapter 7. Linear regression

In machine learning, we often care more about predictions than about interpreting the parame-
ters. Using Equation 4.126, we can easily show that the posterior predictive distribution at a test
point x is also Gaussian:

p(ylx,D,0%) = /N(y|XTW702)N(W|WN,VN)dW (7.60)
= N(y|lwkx, 0% (x)) (7.61)
o3(x) = o2 +xTVyx (7.62)

The variance in this prediction, 0% (x), depends on two terms: the variance of the observation
noise, 02, and the variance in the parameters, V. The latter translates into variance about
observations in a way which depends on how close x is to the training data D. This is illustrated
in Figure 7.12, where we see that the error bars get larger as we move away from the training
points, representing increased uncertainty. This is important for applications such as active
learning, where we want to model what we don’t know as well as what we do. By contrast, the
plugin approximation has constant sized error bars, since

P D%~ [Ny w0 (w)dw = plafx, . o) 7.63)
See Figure 7.12(a).

2

Bayesian inference when o“ is unknown *

In this section, we apply the results in Section 4.6.3 to the problem of computing p(w, 02| D)

for a linear regression model. This generalizes the results from Section 7.6.1 where we assumed

o? was known. In the case where we use an uninformative prior, we will see some interesting

connections to frequentist statistics.
Conjugate prior
As usual, the likelihood has the form
p(yIX, w,0%) = N(y|Xw,0’Ly) (7.64)

By analogy to Section 4.6.3, one can show that the natural conjugate prior has the following
form:

p(w,0?) = NIG(w,c?|wo, Vo, a0, bo) (7.65)
2 N(w|wo, 0% V)IG(0?|ag, bo) (7.66)
_ bgo (0_2)_(a0+(D/2)+1) (767)

(QW)D/Q\VOﬁF(GO)
(w— Wo)TV()_l(W —wp) + 2bo
202

X exp | — (7.68)

7.6. Bayesian linear regression 235

plugin approximation (MLE) Posterior predictive (known variance)
60 80
= prediction = prediction
QO training data 70l O training data
501
60
40 50+
401
30+
30+
N
20 20+
10F
10
ok
. , _10 ,
-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8
(a) (b)
functions sampled from plugin approximation to posterior functions sampled from posterior
501 100
45
80
40
351
60
30+
25 40+
201
(o) 2o}
15 o
101
ok
il o
o , 20 ,
-8 -6 -4 -2 [} 2 4 6 8 E -6 -4 -2 [2 4 6 8
(c) (d)

Figure 7.12 (a) Plug-in approximation to predictive density (we plug in the MLE of the parameters). (b)
Posterior predictive density, obtained by integrating out the parameters. Black curve is posterior mean,
error bars are 2 standard deviations of the posterior predictive density. (c) 10 samples from the plugin

approximation to posterior predictive. (d) 10 samples from the posterior predictive. Figure generated by
linregPostPredDemo.

With this prior and likelihood, one can show that the posterior has the following form:

p(w,0?|D) = NIG(w,o?|wy, VN, an,by) (7.69)
wy = Vn(Vi'lwe+X"y) (7.70)
Vy = (V' +XTx)™! (7.71)
ay = ao+n/2 (7.72)
1
by = by + 3 (wgValwo + yTy — W%V]Qle) (7.73)

The expressions for wy and V y are similar to the case where o2 is known. The expression for
ap is also intuitive, since it just updates the counts. The expression for by can be interpreted

7.6.3.2

236 Chapter 7. Linear regression

as follows: it is the prior sum of squares, by, plus the empirical sum of squares, y”y, plus a
term due to the error in the prior on w.
The posterior marginals are as follows:

p(a®’|D) = 1G(an,bn) (7.74)
b

p(w|D) = T(WN,G*NVN,ZCLN) (7.75)
N

We give a worked example of using these equations in Section 7.6.3.3.
By analogy to Section 4.6.3.6, the posterior predictive distribution is a Student T distribution.
In particular, given m new test inputs X, we have

- - b - -
p(FX,D) = T(&|XWN,Q—N(Im+XVNXT),2aN) (7.76)
N

The predictive variance has two components: (by/an)I,, due to the measurement noise, and
(by/an)XVnXT due to the uncertainty in w. This latter terms varies depending on how
close the test inputs are to the training data.

It is common to set ag = by = 0, corresponding to an uninformative prior for o2, and to set
wo = 0 and Vo = g(XTX)~! for any positive value g. This is called Zellner’s g-prior (Zellner
1986). Here g plays a role analogous to 1/ in ridge regression. However, the prior covariance is
proportional to (X7 X)~! rather than I. This ensures that the posterior is invariant to scaling
of the inputs (Minka 2000b). See also Exercise 7.10.

We will see below that if we use an uninformative prior, the posterior precision given N
measurements is V' = X7X. The unit information prior is defined to contain as much
information as one sample (Kass and Wasserman 1995). To create a unit information prior for
linear regression, we need to use V 1 = %XTX, which is equivalent to the g-prior with
g=N.

Uninformative prior

An uninformative prior can be obtained by considering the uninformative limit of the conjugate
g-prior, which corresponds to setting g = co. This is equivalent to an improper NIG prior with
wo =0, Vo = oI, ap = 0 and by = 0, which gives p(w, 0?) < o~ (P+2),

Alternatively, we can start with the semi-conjugate prior p(w,o?) = p(w)p(c?), and take
each term to its uninformative limit individually, which gives p(w, 0%) oc 2. This is equivalent
to an improper NIG prior with wg = 0,V = ocl, ag = —D/2 and by = 0. The corresponding
posterior is given by

p(w,0?|D) = NIG(w,o?|wy, VN, an,by) (7.77)
Wy = W = (XTX)71XTy (7.78)
Vy = (XTX)! (7.79)
N-D
any = 5 (7.80)
2
by = % (7.81)

s2 2 (y — XWoe) T (y — XWonie (7.82)

7.6.3.3

7.6. Bayesian linear regression 237

w; Elw,;|D] var [w;|D] 95% CI sig
w0 10.998 3.06027 [4.652, 17.345] *
wl -0.004 0.00156 [-0.008, -0.001] *
w2 -0.054 0.02190 [-0.099, -0.008] *
w3 0.068 0.09947 [-0.138, 0.274]

w4 1294 0.56381 [-2.463, -0.124] *
wd 0.232 0.10438 [0.015, 0.448] *
w6 -0.357 1.56646 [-3.605, 2.892]

w7 -0.237 1.00601 [-2.324, 1.849]

w8 0.181 0.23672 [-0.310, 0.672]

w9 -1.285 0.86485 [-3.079, 0.508]

wl0 -0.433 0.73487 [-1.957, 1.091]

Table 7.2 Posterior mean, standard deviation and credible intervals for a linear regression model with an
uninformative prior fit to the caterpillar data. Produced by linregBayesCaterpillar.

The marginal distribution of the weights is given by
2
s
D)= w, ——C,N—D 7.83
p(w[D) = T(w¥, = C.N - D) .83

where C = (X7X)~! and W is the MLE. We discuss the implications of these equations below.

An example where Bayesian and frequentist inference coincide *

The use of a (semi-conjugate) uninformative prior is interesting because the resulting posterior
turns out to be equivalent to the results from frequentist statistics (see also Section 4.6.3.9). In
particular, from Equation 7.83 we have

2
Cjjs

N — D) (7.84)

This is equivalent to the sampling distribution of the MLE which is given by the following (see
e.g., (Rice 1995, p542), (Casella and Berger 2002, p554)):

Yimw ~tN_D (7.85)
54

where

_ [52C

is the standard error of the estimated parameter. (See Section 6.2 for a discussion of sampling
distributions.) Consequently, the frequentist confidence interval and the Bayesian marginal
credible interval for the parameters are the same in this case.

As a worked example of this, consider the caterpillar dataset from (Marin and Robert 2007).
(The details of what the data mean don’t matter for our present purposes.) We can compute

7.6.4

238 Chapter 7. Linear regression

the posterior mean and standard deviation, and the 95% credible intervals (CI) for the regression
coefficients using Equation 7.84. The results are shown in Table 7.2. It is easy to check that these
95% credible intervals are identical to the 95% confidence intervals computed using standard
frequentist methods (see linregBayesCaterpillar for the code).

We can also use these marginal posteriors to compute if the coefficients are “significantly”
different from 0. An informal way to do this (without using decision theory) is to check if its 95%
CI excludes 0. From Table 7.2, we see that the CIs for coefficients 0, 1, 2, 4, 5 are all significant
by this measure, so we put a little star by them. It is easy to check that these results are the
same as those produced by standard frequentist software packages which compute p-values at
the 5% level.

Although the correspondence between the Bayesian and frequentist results might seem ap-
pealing to some readers, recall from Section 6.6 that frequentist inference is riddled with patholo-
gies. Also, note that the MLE does not even exist when N < D, so standard frequentist inference
theory breaks down in this setting. Bayesian inference theory still works, although it requires
the use of proper priors. (See (Maruyama and George 2008) for one extension of the g-prior to
the case where D > N.)

EB for linear regression (evidence procedure)

So far, we have assumed the prior is known. In this section, we describe an empirical Bayes
procedure for picking the hyper-parameters. More precisely, we choose 1 = (v, \) to maximize
the marignal likelihood, where A = 1/0? be the precision of the observation noise and « is
the precision of the prior, p(w) = N (w|0,a~'I). This is known as the evidence procedure
(MacKay 1995b).3 See Section 13.7.4 for the algorithmic details.

The evidence procedure provides an alternative to using cross validation. For example, in
Figure 7.13(b), we plot the log marginal likelihood for different values of «, as well as the
maximum value found by the optimizer. We see that, in this example, we get the same result
as 5-CV, shown in Figure 7.13(a). (We kept A\ = 1/0? fixed in both methods, to make them
comparable.)

The principle practical advantage of the evidence procedure over CV will become apparent
in Section 13.7, where we generalize the prior by allowing a different «; for every feature. This
can be used to perform feature selection, using a technique known as automatic relevancy
determination or ARD. By contrast, it would not be possible to use CV to tune D different
hyper-parameters.

The evidence procedure is also useful when comparing different kinds of models, since it
provides a good approximation to the evidence:

p(Dlm) = / / p(Dlw, m)p(wlm, m)p(n|m)dwdn (7.87)

<~ ma / p(Dlw, m)p(w|m, n)p(nim)dw (7.88)

It is important to (at least approximately) integrate over 1 rather than setting it arbitrarily, for
reasons discussed in Section 5.3.2.5. Indeed, this is the method we used to evaluate the marginal

3. Alternatively, we could integrate out A analytically, as shown in Section 7.6.3, and just optimize « (Buntine and
Weigend 1991). However, it turns out that this is less accurate than optimizing both v and A (MacKay 1999).

7.6. Bayesian linear regression 239

5-fold cross validation, ntrain = 21 log evidence

-100 -
-110-

-120 -

-130-

—140f

. _150
-25 -20 -15 -10 -5 0 5 2! -20 -15 -10 -5 0 5
log lambda log alpha

(a) (b)

Figure 7.13 (a) Estimate of test MSE produced by 5-fold cross-validation vs log(\). The smallest value is
indicated by the vertical line. Note the vertical scale is in log units. (c) Log marginal likelihood vs log().
The largest value is indicated by the vertical line. Figure generated by linregPolyVsRegDemo.

likelihood for the polynomial regression models in Figures 5.7 and 5.8. For a “more Bayesian”
approach, in which we model our uncertainty about 7 rather than computing point estimates,
see Section 21.5.2.

Exercises

Exercise 7.1 Behavior of training set error with increasing sample size

The error on the test will always decrease as we get more training data, since the model will be better
estimated. However, as shown in Figure 7.10, for sufficiently complex models, the error on the training set
can increase we we get more training data, until we reach some plateau. Explain why.

Exercise 7.2 Multi-output linear regression

(Source: Jaakkola.)

When we have multiple independent outputs in linear regression, the model becomes

M
plylx, W) = [[N (y;1w] xi,07) (7.89)

Jj=1

Since the likelihood factorizes across dimensions, so does the MLE. Thus

W = [W1,..., W] (7.90)

where w; = (XTX)7'Y ;.

In this exercise we apply this result to a model with 2 dimensional response vector y; € R?. Suppose we
have some binary input data, 2; € {0, 1}. The training data is as follows:

240 Chapter 7. Linear regression

x|y
0] (—=1,-1)7

0| (-1,-2)7
0| (=2,-1)7
1| (1,7

1| (1,2)7

1| (2,)7

Let us embed each x; into 2d using the following basis function:

$(0) = (1,0)", (1) = (0,1)" (791
The model becomes
where W is a 2 x 2 matrix. Compute the MLE for W from the above data.

Exercise 7.3 Centering and ridge regression

Assume that X = 0, so the input data has been centered. Show that the optimizer of

Jw,wo) = (y—Xw—wol) (y — Xw —wol) + I\w’ w (7.93)
is

o = 7 (7.94)

w = (XTX+)'XTy (7.95)

Exercise 7.4 MLE for 2 for linear regression

Show that the MLE for the error variance in linear regression is given by
X
60 = (i —xiw)? (7.96)

This is just the empirical variance of the residual errors when we plug in our estimate of w.

Exercise 7.5 MLE for the offset term in linear regression

Linear regression has the form E [y|x] = wo + w”x. It is common to include a column of 1's in the
design matrix, so we can solve for the offset term wq term and the other parameters w at the same time
using the normal equations. However, it is also possible to solve for w and wq separately. Show that

o l—.r. 1
wo = Nzyifﬁzxiw—y*){w (7.97)

So o models the difference in the average output from the average predicted output. Also, show that

N

W= (XTX) "Xy = | S - ®)(x, x)T} [Dyiy)(xi x>} 7.9

1=1 =1

where X, is the centered input matrix containing xj = x; — X along its rows, and y. = y — y is
the centered output vector. Thus we can first compute W on centered data, and then estimate wq using
_ —T A

y—X W.

7.6. Bayesian linear regression 241

Exercise 7.6 MLE for simple linear regression

Simple linear regression refers to the case where the input is scalar, so D = 1. Show that the MLE in
this case is given by the following equations, which may be familiar from basic statistics classes:

Y@ —2)(yi—y) Y, xyi —NTY _ cov[X,Y]
Si@i—2)2 T Y,22-Nz® T var[X]
wo = §—wiz~E[Y]—wE[X] (7.100)

w1 (7.99)

See linregDemo1 for a demo.

Exercise 7.7 Sufficient statistics for online linear regression

(Source: Jaakkola.) Consider fitting the model § = wo + w1 using least squares. Unfortunately we did
not keep the original data, x;, y;, but we do have the following functions (statistics) of the data:

" 1 — I
() . Z“’ g — - Zyi (7.101)
72=1 =1
1 — 1 — 1 —
() _ 2 o 1 (e (n) _ 1 2
Caw = n ;:1 (i —T)°, Cay = n ;:1(371 T)(yi =), Cyy = n ?:1 (yi —9) (7.102)

a. What are the minimal set of statistics that we need to estimate w1 ? (Hint: see Equation 7.99.)
b. What are the minimal set of statistics that we need to estimate wo? (Hint: see Equation 7.97.)

c. Suppose a new data point, Z, 41, yn+1 arrives, and we want to update our sufficient statistics without
looking at the old data, which we have not stored. (This is useful for online learning.) Show that we
can this for T as follows.

1 &R 1
_(nt1) & o (—(n)) 7103
T ”"'1;:1% 1\ + Tnt1 (7.103)
_ 1 _
= 7" 4 g (@ = (™) (7.104)

This has the form: new estimate is old estimate plus correction. We see that the size of the correction
diminishes over time (i.e., as we get more samples). Derive a similar expression to update 7
d. Show that one can update CQ(EZ“) recursively using
n 1 n —(n)—(n —(n —(n
it = [xn+1yn+1 +nCL +nzMy™ — (n+ 1)z *”] (7.105)

Derive a similar expression to update Cl.

e. Implement the online learning algorithm, i.e., write a function of the form [w,ss] = linregUpdateSS(ss,
x, y), where x and y are scalars and ss is a structure containing the sufficient statistics.

f. Plot the coefficients over “time”, using the dataset in linregDemol. (Specifically, use [x,y] =
polyDataMake (’sampling’,’thibaux’).) Check that they converge to the solution given by the
batch (offline) learner (i.e, ordinary least squares). Your result should look like Figure 7.14.

Turn in your derivation, code and plot.

Exercise 7.8 Bayesian linear regression in 1d with known o

(Source: Bolstad.) Consider fitting a model of the form

p(y|z, 8) = N(y|lwo + wiz, o) (7.106)

to the data shown below:

242 Chapter 7. Linear regression

online linear regression

3
0o© O wo
oL o ® wi
° w0 batch
4 o w1 batch
--- PR
o . e *
0 . ® o0 ®
@
@2 -1 . 8
S . o
g2 . °
. . oo,
= . °
— o
4) o
s- o
- o
-6
.
0 5 10 15 20

Figure 7.14 Regression coefficients over time. Produced by Exercise 7.7.

x = [94,96,94,95,104,106,108,113,115,121,1317];
y = [0.47, 0.75, 0.83, 0.98, 1.18, 1.29, 1.40, 1.60, 1.75, 1.90, 2.23];

a. Compute an unbiased estimate of o2 using

N
.2 1 L \2

_ _— 7.107
7 N—2Z_1(y o) (7107

(The denominator is N —2 since we have 2 inputs, namely the offset term and x.) Here ¢; = wo+w1 4,
and W = (Wo, W) is the MLE.

b. Now assume the following prior on w:
p(w) = p(wo)p(wr) (7.108)

Use an (improper) uniform prior on wo and a N'(0, 1) prior on wi. Show that this can be written as
a Gaussian prior of the form p(w) = N (w|wo, Vo). What are wo and V?

c¢. Compute the marginal posterior of the slope, p(w1|D, 02), where D is the data above, and &2 is the
unbiased estimate computed above. What is E [w1|’D, 02] and var [wl\D, 02] Show your work. (You
can use Matlab if you like.) Hint: the posterior variance is a very small number!

d. What is a 95% credible interval for w1?

Exercise 7.9 Generative model for linear regression

Linear regression is the problem of estimating F[Y |x] using a linear function of the form wo + w7 x.
Typically we assume that the conditional distribution of Y~ given X is Gaussian. We can either estimate this
conditional Gaussian directly (a discriminative approach), or we can fit a Gaussian to the joint distribution
of X, Y and then derive E[Y|X = x].

In Exercise 7.5 we showed that the discriminative approach leads to these equations
EY|x] = wo+w'x (7.109)

wy = J-X'w (7.110)
w = (XI'X.)'X'y. (7.111)

7.6. Bayesian linear regression

243

where X, = X — X is the centered input matrix, and X =1,%" replicates X across the rows. Similarly,

Ye =y — ¥ is the centered output vector, and y = 1,3 replicates y across the rows.

a. By finding the maximum likelihood estimates of X x x, £ xv, py and g, derive the above equations
by fitting a joint Gaussian to X, Y and using the formula for conditioning a Gaussian (see Section 4.3.1).

Show your work.

b. What are the advantages and disadvantages of this approach compared to the standard discriminative

approach?

Exercise 7.10 Bayesian linear regression using the g-prior

Show that when we use the g-prior, p(w,0?) = NIG(w, 2|0, g(X"X)~,0,0), the posterior has the

following form:
p(w,o”|D)
VN

WN

anN

by

NIG(w,o*|wn, VN, an, by)

x"x)"

g

g+1

9
g+1

N/2

&
2

+

Wimnle

1

2(g+1)

~T T ~
wmleX mele

(7.112)
(7.113)
(7.114)
(7.115)
(7.116)

(7.117)

8.1

8.2

8.3

Logistic regression

Introduction

One way to build a probabilistic classifier is to create a joint model of the form p(y,x) and
then to condition on x, thereby deriving p(y|x). This is called the generative approach. An
alternative approach is to fit a model of the form p(y|x) directly. This is called the discrimi-
native approach, and is the approach we adopt in this chapter. In particular, we will assume
discriminative models which are linear in the parameters. This will turn out to significantly sim-
plify model fitting, as we will see. In Section 8.6, we compare the generative and discriminative
approaches, and in later chapters, we will consider non-linear and non-parametric discriminative
models.

Model specification

As we discussed in Section 1.4.6, logistic regression corresponds to the following binary classifi-
cation model:

p(y|x, w) = Ber(y|sigm(w’ x)) 8.)

A 1d example is shown in Figure 1.19(b). Logistic regression can easily be extended to higher-
dimensional inputs. For example, Figure 8.1 shows plots of p(y = 1|x,w) = sigm(w?x) for
2d input and different weight vectors w. If we threshold these probabilities at 0.5, we induce a
linear decision boundary, whose normal (perpendicular) is given by w.

Model fitting

In this section, we discuss algorithms for estimating the parameters of a logistic regression
model.

8.3.1

246 Chapter 8. Logistic regression

w=(1,4)
5r ! »
w, 05
w=(-2,3) .
B o
i 1
nz{’ W=(0,2) W=(2,2)
3 B o
% 10 10 1 1
| 0s os W=(5.1)
1 2 1 05
w=(1,0) w=(3,0) P .
L o 5
1 1 1 e
W=(-2,-1) 05 / 05 , % %o
o- s - T -
F w=(2,-2)
8 o
=1 &, 00 x, | mmm——
‘ ’ nﬁ\\/
JyeeT—
-8 o
_oF o 0 X
X, .,

Figure 8.1 Plots of sigm(wiz1 + waxz). Here w = (w1, ws2) defines the normal to the decision
boundary. Points to the right of this have sigm(w”x) > 0.5, and points to the left have sigm(w’x) <
0.5. Based on Figure 39.3 of (MacKay 2003). Figure generated by sigmoidplot2D.

MLE

The negative log-likelihood for logistic regression is given by

NLL(w) = —Zlog vi= x (1— ui)ﬂ(yizo)] (8.2)
N

= =) [yilogpi + (1 —yi)log(1 —)] 8.3)
i=1

This is also called the cross-entropy error function (see Section 2.8.2).
Another way of wr1t1ng this is as follows. Suppose yl € {—1,+1} instead of y; € {0,1}. We
have p(y = 1) = W and p(y = 1) = W Hence

NLL(w Z log(1 + exp(—7iw’x;)) (8.4)

i=1

Unlike linear regression, we can no longer write down the MLE in closed form. Instead, we
need to use an optimization algorithm to compute it. For this, we need to derive the gradient
and Hessian.

In the case of logistic regression, one can show (Exercise 8.3) that the gradient and Hessian

8.3.2

8.3. Model fitting 247

Figure 8.2 Gradient descent on a simple function, starting from (0,0), for 20 steps, using a fixed
learning rate (step size) 7. The global minimum is at (1,1). (@) n = 0.1. (b) n = 0.6. Figure generated by
steepestDescentDemo.

of this are given by the following

d T
g = %f(w) = ;(M —y)xi =X (p—y) (8.5)
d
H = ——g(w)’ = (Vwu)x! =Y pill = p)xix] (8.6)
= XTsX 8.7)

where S £ diag(u;(1 — p1;)). One can also show (Exercise 8.3) that H is positive definite.
Hence the NLL is convex and has a unique global minimum. Below we discuss some methods
for finding this minimum.

Steepest descent

Perhaps the simplest algorithm for unconstrained optimization is gradient descent, also known
as steepest descent. This can be written as follows:

0141 = 01 — M8k (8.8)

where 7y, is the step size or learning rate. The main issue in gradient descent is: how should
we set the step size? This turns out to be quite tricky. If we use a constant learning rate, but
make it too small, convergence will be very slow, but if we make it too large, the method can fail
to converge at all. This is illustrated in Figure 8.2. where we plot the following (convex) function

f(6) =0.5(62 — 0,)% +0.5(0; — 1), (8.9)

We arbitrarily decide to start from (0, 0). In Figure 8.2(a), we use a fixed step size of = 0.1; we
see that it moves slowly along the valley. In Figure 8.2(b), we use a fixed step size of n = 0.6; we
see that the algorithm starts oscillating up and down the sides of the valley and never converges
to the optimum.

248 Chapter 8. Logistic regression

exact line searching 1

(@) (b)

Figure 8.3 (a) Steepest descent on the same function as Figure 8.2, starting from (0, 0), using line search.
Figure generated by steepestDescentDemo. (b) Illustration of the fact that at the end of a line search
(top of picture), the local gradient of the function will be perpendicular to the search direction. Based on
Figure 10.6.1 of (Press et al. 1988).

Let us develop a more stable method for picking the step size, so that the method is guaran-
teed to converge to a local optimum no matter where we start. (This property is called global
convergence, which should not be confused with convergence to the global optimum!) By
Taylor’s theorem, we have

f(O+nd)~ f(0)+ng’d 8.10)

where d is our descent direction. So if 7 is chosen small enough, then f(6+nd) < f(8), since
the gradient will be negative. But we don’t want to choose the step size 7 too small, or we will
move very slowly and may not reach the minimum. So let us pick 7 to minimize

o(n) = f(Or +ndy) (8.11)

This is called line minimization or line search. There are various methods for solving this 1d
optimization problem; see (Nocedal and Wright 2006) for details.

Figure 8.3(a) demonstrates that line search does indeed work for our simple problem. However,
we see that the steepest descent path with exact line searches exhibits a characteristic zig-zag
behavior. To see why, note that an exact line search satisfies 7, = argmin,~o¢(n). A
necessary condition for the optimum is ¢/(n) = 0. By the chain rule, ¢'(n) = d”'g, where
g = f'(0 + nd) is the gradient at the end of the step. So we either have g = 0, which means
we have found a stationary point, or g | d, which means that exact search stops at a point
where the local gradient is perpendicular to the search direction. Hence consecutive directions
will be orthogonal (see Figure 8.3(b)). This explains the zig-zag behavior.

One simple heuristic to reduce the effect of zig-zagging is to add a momentum term, (6}, —
0r_1), as follows:

Or1 = O —mgr + pe(Or — Or—1) (8.12)

8.3.3

8.3. Model fitting 249

where 0 < pp < 1 controls the importance of the momentum term. In the optimization
community, this is known as the heavy ball method (see e.g., (Bertsekas 1999)).

An alternative way to minimize “zig-zagging” is to use the method of conjugate gradients
(see e.g., (Nocedal and Wright 2006, ch 5) or (Golub and van Loan 1996, Sec 10.2)). This is the
method of choice for quadratic objectives of the form f(6) = 87 A6, which arise when solving
linear systems. However, non-linear CG is less popular.

Newton’s method

Algorithm 8.1: Newton’s method for minimizing a strictly convex function

1 Initialize 6g;

2 for £ =1,2,... until convergence do

Evaluate g, = Vf(0%);

Evaluate Hy, = V2f(0%);

Solve Hy,dy = —g. for dg;

Use line search to find stepsize 7, along dg;
0141 = 01 + midy;

N S g s W

One can derive faster optimization methods by taking the curvature of the space (i.e., the
Hessian) into account. These are called second order optimization metods. The primary
example is Newton’s algorithm. This is an iterative algorithm which consists of updates of the
form

01 = 0y, — nH ‘g 8.13)

The full pseudo-code is given in Algorithm 2.
This algorithm can be derived as follows. Consider making a second-order Taylor series
approximation of f(60) around 6:

Faua(8) = fi+ &1(8 ~ 03) + 3(6 — 6,)THL(6 — 6)) 814
Let us rewrite this as

fauaa(8) = 6T AO +bT0 + ¢ 8.15)
where

A= %Hk, b =g, —Hib, c=fr—gi0+ %engﬂk (8.16)

The minimum of fg,4q is at

1
0= —§A—1b =0, —H;'g: (8.17)
Thus the Newton step dj = lezlgk, is what should be added to 6, to minimize the second

order approximation of f around 6. See Figure 8.4(a) for an illustration.

8.3.4

250 Chapter 8. Logistic regression

—1(x)

(@) (b)

Figure 8.4 [Illustration of Newton’s method for minimizing a 1d function. (a) The solid curve is the
function f(z). The dotted line fyuaq(x) is its second order approximation at zx. The Newton step dj
is what must be added to = to get to the minimum of fquqq(x). Based on Figure 13.4 of (Vandenberghe
2006). Figure generated by newtonsMethodMinQuad. (b) Illustration of Newton’s method applied to a
nonconvex function. We fit a quadratic around the current point x; and move to its stationary point,
ZTk4+1 = X +di. Unfortunately, this is a local maximum, not minimum. This means we need to be careful
about the extent of our quadratic approximation. Based on Figure 13.11 of (Vandenberghe 2006). Figure
generated by newtonsMethodNonConvex.

In its simplest form (as listed), Newton’s method requires that Hy, be positive definite, which
will hold if the function is strictly convex. If not, the objective function is not convex, then
H; may not be positive definite, so d = nglgk may not be a descent direction (see
Figure 8.4(b) for an example). In this case, one simple strategy is to revert to steepest descent,
d; = —gi. The Levenberg Marquardt algorithm is an adaptive way to blend between Newton
steps and steepest descent steps. This method is widely used when solving nonlinear least
squares problems. An alternative approach is this: Rather than computing d; = —H,:lgk
directly, we can solve the linear system of equations Hydy = —gj for dj using conjugate
gradient (CG). If Hj, is not positive definite, we can simply truncate the CG iterations as soon
as negative curvature is detected; this is called truncated Newton.

Iteratively reweighted least squares (IRLS)

Let us now apply Newton’s algorithm to find the MLE for binary logistic regression. The Newton
update at iteration k£ + 1 for this model is as follows (using 1, = 1, since the Hessian is exact):

w1 = wp—H g (8.18)
= wi+ (XIS, X)X (y —) (8.19)

= (XTS,X) ! [(XTSpX)wy + X (y — py)] (8.20)

= (XT8,. X) ' X [S) Xw) +y —] (8.21)
(XT8,X) 'XTS 2z (8.22)

where we have defined the working response as

zi, = Xwy, + S, (y — 1) (8.23)

8.3.5

8.3. Model fitting 251

Equation 8.22 is an example of a weighted least squares problem, which is a minimizer of
N
> Skilzri — whxi)? (8.24)
i=1

Since Sy is a diagonal matrix, we can rewrite the targets in component form (for each case
i1=1:N)as

T Yi — Hki
Zhi = Wp X+ ————
’ P (1 —)

This algorithm is known as iteratively reweighted least squares or IRLS for short, since at
each iteration, we solve a weighted least squares problem, where the weight matrix Sy changes
at each iteration. See Algorithm 10 for some pseudocode.

(8.25)

Algorithm 8.2: Iteratively reweighted least squares (IRLS)

1w=0p;

2 wo = log(y/(1 —7));

3 repeat

4 ni = wo + wx;;

5| pq =sigm(n;);

6 si = pi(1— pg) 5

7| m=m+ B

8 S = diag(s1.n) ;

9 | w=(XTSX) 1xXTSgz
o until converged,;

—

Quasi-Newton (variable metric) methods

The mother of all second-order optimization algorithm is Newton’s algorithm, which we dis-
cussed in Section 8.3.3. Unfortunately, it may be too expensive to compute H explicitly. Quasi-
Newton methods iteratively build up an approximation to the Hessian using information gleaned
from the gradient vector at each step. The most common method is called BFGS (named after
its inventors, Broyden, Fletcher, Goldfarb and Shanno), which updates the approximation to the
Hessian B ~ H;, as follows:

yi¥i (Bisk)(Brsi)”

Byt = Bip+ (8.26)
* YiSk st Bisy,
S = Hk; — 01@71 (8.27)
Ye = 8k — 8k-1 (8.28)

This is a rank-two update to the matrix, and ensures that the matrix remains positive definite
(under certain restrictions on the step size). We typically start with a diagonal approximation,
By = I. Thus BFGS can be thought of as a “diagonal plus low-rank” approximation to the
Hessian.

8.3.6

8.3.7

252 Chapter 8. Logistic regression

Alternatively, BEGS can iteratively update an approximation to the inverse Hessian, C;, ~ H, ',
as follows:

S r ST S ST
o — (12 (1ol 2
Yi Sk Yi. Sk Yi. Sk

Since storing the Hessian takes O(D?) space, for very large problems, one can use limited
memory BFGS, or L-BFGS, where Hj, or H, ' is approximated by a diagonal plus low rank
matrix. In particular, the product Hj 'gj. can be obtained by performing a sequence of inner
products with s; and yy, using only the m most recent (sj,yy) pairs, and ignoring older
information. The storage requirements are therefore O(mD). Typically m ~ 20 suffices for
good performance. See (Nocedal and Wright 2006, p177) for more information. [-BFGS is
often the method of choice for most unconstrained smooth optimization problems that arise in
machine learning (although see Section 8.5).

L2 regularization

Just as we prefer ridge regression to linear regression, so we should prefer MAP estimation for
logistic regression to computing the MLE. In fact, regularization is important in the classification
setting even if we have lots of data. To see why, suppose the data is linearly separable. In
this case, the MLE is obtained when ||w|| — oo, corresponding to an infinitely steep sigmoid
function, I(w”x > wy), also known as a linear threshold unit. This assigns the maximal
amount of probability mass to the training data. However, such a solution is very brittle and
will not generalize well.

To prevent this, we can use /o regularization, just as we did with ridge regression. We note
that the new objective, gradient and Hessian have the following forms:

f'(w) = NLL(w)+w'w (8.30)
g(w) = gw)+w (8.31)
H(w) = H(w)+ I (8.32)

It is a simple matter to pass these modified equations into any gradient-based optimizer.

Multi-class logistic regression
Now we consider multinomial logistic regression, sometimes called a maximum entropy
classifier. This is a model of the form
exp(wlx)

C
Zc’:l exp(ng)

ply = c|x,W) = (8.33)

A slight variant, known as a conditional logit model, normalizes over a different set of classes
for each data case; this can be useful for modeling choices that users make between different
sets of items that are offered to them.

Let us now introduce some notation. Let ;e = p(y; = ¢|x;, W) = S(n,)., where 1, =
WTx; is a C x 1 vector. Also, let y;. = I(y; = c) be the one-of-C encoding of y;; thus y; is a
bit vector, in which the c’th bit turns on iff y; = c. Following (Krishnapuram et al. 2005), let us

8.3. Model fitting 253

set wo = 0, to ensure identifiability, and define w = vec(W(:,1: C—1)) tobe a D x (C'—1)
column vector.
With this, the log-likelihood can be written as

N C
(W) = log H H Pl =" " yiclog pic (8.34)

N i=1lc Cl i=1 c=1
= Z [(Z YieW, xl) log (Z exp(C,x2 >] (8.35)
i=1 c=1 /=1

Define the NLL as
f(w) = —{(w) (8.36)

We now proceed to compute the gradient and Hessian of this expression. Since w is block-
structured, the notation gets a bit heavy, but the ideas are simple. It helps to define A @ B
be the kronecker product of matrices A and B. If A is an m X n matrix and B is a p X ¢
matrix, then A x B is the mp x ng block matrix
CL11B e alnB
A®B= (8.37)

B 4, B

Returning to the task at hand, one can show (Exercise 8.4) that the gradient is given by

N

g(W) =Vf(w) = (1; —y:) ©x; (8.38)

i=1

where y; = (I(y; = 1),...,I(y; = C — 1)) and pu;(W) = [p(y; = 1|x;, W),....p(y; =
C — 1|x;, W)] are column vectors of length C' — 1, For example, if we have D = 3 feature
dimensions and C = 3 classes, this becomes

(,uﬂ - yu)le
(:U/zl - yzl)
W) = (Mn - yil)xii’) 8.39
g() zl: (/Jiz - yiz)l‘u ()
(,UiQ - yz’2)$i2
(,uzz - in)le

In other words, for each class ¢, the derivative for the weights in the ¢’th column is
V. f(W) = > (tie — yie)xi (8.40)
i
This has the same form as in the binary logistic regression case, namely an error term times x;.

(This turns out to be a general property of distributions in the exponential family, as we will see
in Section 9.3.2.)

8.4

254 Chapter 8. Logistic regression

One can also show (Exercise 8.4) that the Hessian is the following block structured D(C' —
1) x D(C' — 1) matrix:
N
H(W) = V*f(w) =) (diag(p;) — pipe]) ® (xix]) (8.41)

i=1

For example, if we have 3 features and 3 classes, this becomes

Ti2%i1 Ti2%i2 Ti2T43 (8.42)

2
—Hi1 g2 Hi2 — Mo
! Ti3Til Ti3Ti2 TizTi3

T T TiaTil TilTi2 TiTi3
How) = 3 (M A s e
K3

(pir — p3)Xs —pipinX
v 8.43
Z (—pirpi2Xs (a2 — pi) X (643

i
where X; = x;x7. In other words, the block ¢, ¢/ submatrix is given by

Heo (W) =) ptic(be.e — pie)XiX, (8.44)
i

This is also a positive definite matrix, so there is a unique MLE.
Now consider minimizing

f'(W) £ —logp(D|w) — log p(W) (8.45)
where p(W) =[], N (w,|0, Vy). The new objective, its gradient and Hessian are given by
ffW) = f(W)+ %Z WV lw, (8.46)
g(W) = gW)+V5'(d w) (8.47)
HW) = HW)+Ic® \670—1 (8.48)

This can be passed to any gradient-based optimizer to find the MAP estimate. Note, however,
that the Hessian has size O ((CD) x (CD)), which is C' times more row and columns than
in the binary case, so limited memory BFGS is more appropriate than Newton’s method. See
logregFit for some Matlab code.

Bayesian logistic regression

It is natural to want to compute the full posterior over the parameters, p(w|D), for logistic
regression models. This can be useful for any situation where we want to associate confidence
intervals with our predictions (e.g., this is necessary when solving contextual bandit problems,
discussed in Section 5.7.3.1).

Unfortunately, unlike the linear regression case, this cannot be done exactly, since there is no
convenient conjugate prior for logistic regression. We discuss one simple approximation below;
some other approaches include MCMC (Section 24.3.3.]), variational inference (Section 21.8.1.1),
expectation propagation (Kuss and Rasmussen 2005), etc. For notational simplicity, we stick to
binary logistic regression.

8.4.1

8.4.2

8.4. Bayesian logistic regression 255

Laplace approximation

In this section, we discuss how to make a Gaussian approximation to a posterior distribution.
The approximation works as follows. Suppose 8 € RP. Let

1
p(8D) = e F® (8.49)
Z
where F(0) is called an energy function, and is equal to the negative log of the unnormal-

ized log posterior, £(0) = —logp(0, D), with Z = p(D) being the normalization constant.
Performing a Taylor series expansion around the mode 6™ (i.e., the lowest energy state) we get

E@)~E@0*)+(0—06")Tg+ %(0 —-6"TH(0 - 6%) (8.50)

where g is the gradient and H is the Hessian of the energy function evaluated at the mode:
0%E(0)
2£VE@)|,., H- . 8.51
g (9) 0 90067 |6 (8.51)
Since 0" is the mode, the gradient term is zero. Hence
1 " 1

p(O|D) =~ Ee—E“’) exp [—2(9 —0")TH(0 - 6%) (8.52)

= N6, H) (8.53)

Z=p(D) = / H(O|D)dO = e F©O) (2r)P/2|H |2 (8.54)

The last line follows from normalization constant of the multivariate Gaussian.

Equation 8.54 is known as the Laplace approximation to the marginal likelihood. Therefore
Equation 8.52 is sometimes called the the Laplace approximation to the posterior. However,
in the statistics community, the term “Laplace approximation” refers to a more sophisticated
method (see e.g. (Rue et al. 2009) for details). It may therefore be better to use the term
“Gaussian approximation” to refer to Equation 8.52. A Gaussian approximation is often a
reasonable approximation, since posteriors often become more “Gaussian-like” as the sample
size increases, for reasons analogous to the central limit theorem. (In physics, there is an
analogous technique known as a saddle point approximation.)

Derivation of the BIC

We can use the Gaussian approximation to write the log marginal likelihood as follows, dropping
irrelevant constants:

* * 1
log p(D) = log p(D|0) + logp(0™) — 3 log |H] (8.55)

The penalization terms which are added to the log p(D]|0") are sometimes called the Occam
factor, and are a measure of model complexity. If we have a uniform prior, p(8) o 1, we can
drop the second term, and replace 6" with the MLE, 6.

256 Chapter 8. Logistic regression

We now focus on approximating the third term. We have H = Zf\il H;, where H; =
V'V log p(D;|6). Let us approximate each H; by a fixed matrix H. Then we have

log [H| = log |NH| = log(NH|) = Dlog N + log |H]| (8.56)

where D = dim(6) and we have assumed H is full rank. We can drop the log |H| term, since
it is independent of NV, and thus will get overwhelmed by the likelihood. Putting all the pieces
together, we recover the BIC score (Section 5.3.2.4):

log p(D) ~ log p(D|@) — glogN (8.57)

8.4.3 Gaussian approximation for logistic regression

Now let us apply the Gaussian approximation to logistic regression. We will use a a Gaussian
prior of the form p(w) = N(w|0, V), just as we did in MAP estimation. The approximate
posterior is given by

p(w|D) ~ N(wlw,H) (8.58)

where W = arg miny, F(w), E(w) = —(logp(D|w) + logp(w)), and H = V2E(W)| .

As an example, consider the linearly separable 2D data in Figure 8.5(a). There are many
parameter settings that correspond to lines that perfectly separate the training data; we show 4
examples. The likelihood surface is shown in Figure 8.5(b), where we see that the likelihood is
unbounded as we move up and to the right in parameter space, along a ridge where wy/w; =
2.35 (this is indicated by the diagonal line). The reasons for this is that we can maximize the
likelihood by driving ||w|| to infinity (subject to being on this line), since large regression weights
make the sigmoid function very steep, turning it into a step function. Consequently the MLE is
not well defined when the data is linearly separable.

To regularize the problem, let us use a vague spherical prior centered at the origin, A'(w|0, 1001I).
Multiplying this spherical prior by the likelihood surface results in a highly skewed posterior,
shown in Figure 8.5(c). (The posterior is skewed because the likelihood function “chops off”
regions of parameter space (in a “soft” fashion) which disagree with the data.) The MAP estimate
is shown by the blue dot. Unlike the MLE, this is not at infinity.

The Gaussian approximation to this posterior is shown in Figure 8.5(d). We see that this is
a symmetric distribution, and therefore not a great approximation. Of course, it gets the mode
correct (by construction), and it at least represents the fact that there is more uncertainty along
the southwest-northeast direction (which corresponds to uncertainty about the orientation of
separating lines) than perpendicular to this. Although a crude approximation, this is surely
better than approximating the posterior by a delta function, which is what MAP estimation does.

8.4.4 Approximating the posterior predictive

Given the posterior, we can compute credible intervals, perform hypothesis tests, etc., just as we
did in Section 7.6.3.3 in the case of linear regression. But in machine learning, interest usually
focusses on prediction. The posterior predictive distribution has the form

p(ylx, D)

/ p(ylx, w)p(w|D)dw (8.59)

8.4. Bayesian logistic regression 257

Figure 8.5 (a) Two-class data in 2d. (b) Log-likelihood for a logistic regression model. The line is drawn
from the origin in the direction of the MLE (which is at infinity). The numbers correspond to 4 points
in parameter space, corresponding to the lines in (a). (c) Unnormalized log posterior (assuming vague
spherical prior). (d) Laplace approximation to posterior. Based on a figure by Mark Girolami. Figure
generated by logregLaplaceGirolamiDemo.

Unfortunately this integral is intractable.
The simplest approximation is the plug-in approximation, which, in the binary case, takes the
form

ply=1x,D) =~ ply=1[x,E[w]) (8.60)

where E [w] is the posterior mean. In this context, E [w] is called the Bayes point. Of course,
such a plug-in estimate underestimates the uncertainty. We discuss some better approximations
below.

8.4.4.1

258 Chapter 8. Logistic regression

p(y=1|x, WMAP) decision boundary for sampled w
T 8 T T T T T T T
] 6 1
] al]
Oo o
i o o o P i
o 8%
oo
1 oF o QX - 5 1
[¢]
o—% O
e}
i ol o o © i
J 4l o J
] rys i
. 8 . f f J)
6 8 -10 -8 -6 -4 -2 0 2 4 6 8

(b)

MC approx of p(y=1|x)

Figure 8.6 Posterior predictive distribution for a logistic regression model in 2d. Top left: contours of
p(y = 1|X, Wiap). Top right: samples from the posterior predictive distribution. Bottom left: Averaging
over these samples. Bottom right: moderated output (probit approximation). Based on a figure by Mark
Girolami. Figure generated by logreglLaplaceGirolamiDemo.

Monte Carlo approximation

A better approach is to use a Monte Carlo approximation, as follows:

5
1
p(y=1|x,D) = 3 Z sigm((w*)7x) (8.61)
s=1

where w® ~ p(w|D) are samples from the posterior. (This technique can be trivially extended
to the multi-class case.) If we have approximated the posterior using Monte Carlo, we can reuse
these samples for prediction. If we made a Gaussian approximation to the posterior, we can
draw independent samples from the Gaussian using standard methods.

Figure 8.6(b) shows samples from the posteiror predictive for our 2d example. Figure 8.6(c)

8.4.4.2

8.4. Bayesian logistic regression 259

0.9

1 * G@e ?
08 0.8
08 0.7

0.6

— — probit

05
04 0.4
03 0.3
0.2

0.1

0 XX} L] L]

460 480 500 520 540 560 580 600 620 640 0
6 -4 -2 0 2 4 6

(@) (b)

Figure 8.7 (a) Posterior predictive density for SAT data. The red circle denotes the posterior mean, the
blue cross the posterior median, and the blue lines denote the 5th and 95th percentiles of the predictive
distribution. Figure generated by logregSATdemoBayes. (b) The logistic (sigmoid) function sigm(zx) in
solid red, with the rescaled probit funct