Large-dimensional Central Limit Theorem with Fourth-moment Error Bounds on Convex Sets and Balls

Zhi Zhang

2021/3/3
Topics

▶ Some results on the large-dimensional Gaussian approximation of a sum of n independent random vectors in \mathbb{R}^d together with fourth-moment error bounds on convex sets and Euclidean balls.

▶ Application to the bootstrap: Applied the bounds we obtained to the bootstrap approximation on balls.
Outline

Introduction and Motivations

Main Theorem
- Approximation on Convex Sets
- Approximation on Euclidean Balls

Sketch of the Proof
- Basic Decomposition
- Proof of Theorem 2.1
- Proof of Theorem 2.2

Application: Bootstrap Approximation on Balls
- Empirical bootstrap
- Wild bootstrap
Introduction and Motivation

Let \(\{\xi_i\}_{i=1}^n \) be a sequence of independent mean-zero random vectors in \(\mathbb{R}^d \), \(W = \sum_{i=1}^n \xi_i \) and \(\Sigma = \text{Var}(W) \).

It is well known that under finite third-moment conditions and for fixed dimension \(d \), the distribution of \(W \) can be approximated by a Gaussian distribution with error rate \(O(1/\sqrt{n}) \).

Motivated by modern statistical applications, we are interested in the large-dimensional setting where \(d \) grows with \(n \). Numerous studies have provided explicit error bounds on various distributional distances in the Gaussian approximation.
Introduction and Motivation

- However, the optimal rates, especially in terms of how rapidly d can grow with n while maintaining the validity of the Gaussian approximation, have not been fully addressed and remain a challenging open problem.

- For convex sets, Bentkus (2005) proved for the above W that if Σ is invertible and $Z \sim N(0, \Sigma)$, then

$$
\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leq C d^{1/4} \sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^3
$$

where \mathcal{A} is the collection of all measurable convex sets in \mathbb{R}^d, C is an absolute constant and $| \cdot |$ denotes the Euclidean norm when applied to a vector.
Introduction and Motivation

- The first main result is that up to a logarithmic factor,

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leq \log Cd^{1/4} \left(\sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right)^{1/2}$$

(2)

where \mathcal{A} is the collection of all measurable convex sets in \mathbb{R}^d. And they derive the similar result in the case of Euclidean balls.

- These two results share some advantages over Bentkus’s works and have some applications on bootstraps approximation on balls.
Notations

- For two vectors $x, y \in \mathbb{R}^d$, $x \cdot y$ denotes their inner product.
- For two $d \times d$ matrices M and N, we write $\langle M, N \rangle_{H.S.}$ for their Hilbert-Schmidt inner product.
 $$\langle M, N \rangle_{H.S.} = \text{tr} \left(M^T N \right) = \sum_i \langle Me_i, Ne_i \rangle$$

 where $\{e_i : i \in I\}$ an orthonormal basis.

- We write ∇f and $\text{Hess} f$ for the gradient and Hessian matrix of f, respectively. In addition, we denote by $\nabla^r f(x)$ the r-th derivative of f at x regarded as an r-linear form: The value of $\nabla^r f(x)$ evaluated at $u_1, \ldots, u_r \in \mathbb{R}^d$ is given by
 $$\langle \nabla^r f(x), u_1 \otimes \cdots \otimes u_r \rangle = \sum_{j_1, \ldots, j_r=1}^d \partial_{j_1, \ldots, j_r} f(x) u_{1,j_1} \cdots u_{r,j_r}$$

 When $u_1 = \cdots = u_r =: u$, we write $u_1 \otimes \cdots \otimes u_r = u^\otimes r$ for short.
Notations

▶ For any r-linear form T, its injective norm is defined by

$$\|T\|_\vee := \sup_{|u_1|\vee\ldots\vee|u_r|\leq 1} |\langle T, u_1 \otimes \cdots \otimes u_r \rangle|$$

▶ For an $(r - 1)$-times differentiable function $h : \mathbb{R}^d \to \mathbb{R}$, we write

$$M_r(h) := \sup_{x \neq y} \frac{\left| \nabla^{r-1} h(x) - \nabla^{r-1} h(y) \right|_\vee}{|x - y|}$$

▶ Note that $M_r(h) = \sup_{x \in \mathbb{R}^d} \left| \nabla^r h(x) \right|_\vee$ if h is r-times differentiable.
Main Theorem

Theorem (2.1)

Let $\xi = \{\xi_i\}_{i=1}^n$ be a sequence of centered independent random vectors in \mathbb{R}^d with finite fourth moments and set $W = \sum_{i=1}^n \xi_i$. Assume $\text{Var}(W) = \Sigma$ and Σ is invertible. Let $Z \sim N(0, \Sigma)$ be a centered Gaussian vector in \mathbb{R}^d with covariance matrix Σ. Then,

$$
\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \\
\leq Cd^{1/4} \left(\sum_{i=1}^n \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right)^{1/2} \left(\left| \log \left(\sum_{i=1}^n \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right) \right| \vee 1 \right)
$$

(3)

where \mathcal{A} is the collection of all measurable convex sets in \mathbb{R}^d.

Remark of Theorem 2.1

Consider the situation where $\xi_i = X_i / \sqrt{n}$ and $\{X_1, X_2, \ldots\}$ is a sequence of i.i.d. mean-zero random vectors in \mathbb{R}^d with $\text{Var}(X_i) = I_d$. In this setting, $\Sigma = I_d$, and for the d-vector X_i, we have

$$\mathbb{E} |X_i|^3 \propto d^{3/2} \quad \mathbb{E} |X_i|^4 \propto d^2$$

- RHS of (3) in Theorem 2.1 is of the order $O \left(\frac{d^{5/2}}{n} \right)^{1/2}$ up to a logarithmic factor.

- RHS of (1) in Bentkus’s work is of the order $O \left(\frac{d^{7/2}}{n} \right)^{1/2}$

Therefore, subject to the requirement of the existence of the fourth moment, (3) is preferable to (1) in the large-dimensional setting where $d \to \infty$.
Theorem (2.2)

Let $\xi = \{\xi_i\}_{i=1}^n$ be a sequence of centered independent random vectors in \mathbb{R}^d with finite fourth moments and set $W = \sum_{i=1}^n \xi_i$. Let $Z \sim N(0, \Sigma)$ be a centered Gaussian vector in \mathbb{R}^d with covariance matrix Σ. Assume Σ is invertible. Then

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leq C \Psi(\delta(W, \Sigma))$$

(4)

where $\Psi(x) = x(|\log x| \vee 1)$, \mathcal{B} is the set of all Euclidean balls in \mathbb{R}^d and

$$\delta(W, \Sigma) := \left\| I_d - \text{Var} \left(\Sigma^{-1/2} W \right) \right\|_{H.S.} + \left(\sum_{i=1}^n \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right)^{1/2}$$
Main Theorem

Theorem (2.3)

Let ξ, W and Z be as in Theorem 2.2. Assume $\text{tr} \left(\Sigma^2 \right) > 0$. Then

$$\sup_{A \in \mathcal{B}} \left| \mathbb{P}(W \in A) - \mathbb{P}(Z \in A) \right| \leq \frac{C}{\text{tr} \left(\Sigma^2 \right)^{1/4}} \sqrt{\tilde{\delta}(W, \Sigma)} \quad (5)$$

where

$$\tilde{\delta}(W, \Sigma) := \|\Sigma - \text{Var}(W)\|_{H.S.} + \sum_{j=1}^{d} |\Sigma_{jj} - \text{Var}(W_j)|$$

$$+ \sqrt{\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4} + \sum_{j=1}^{d} \sqrt{\sum_{i=1}^{n} \mathbb{E} \left[\xi_{ij}^4 \right]}$$
Under the same setting in the previous remark, note that

$$
\mathbb{E} |\xi_i|^4 \leq d \sum_{j=1}^{d} \mathbb{E} \xi_{ij}^4
$$

if \(\text{Var}(W) = \Sigma = I_d \), the RHS of (5) in Thm 2.3 is bounded by

$$
C \max_{1 \leq j \leq d} \left(d \sum_{i=1}^{n} \mathbb{E} \xi_{ij}^4 \right)^{1/4}
$$

If \(\max_{1 \leq i \leq n} \max_{1 \leq j \leq d} \left(\mathbb{E} \xi_{ij}^4 \right)^{1/4} = O(1/\sqrt{n}) \) as \(n \to \infty \), the RHS of Thm 2.3 is of order \(O\left(\frac{d}{n} \right)^{1/4} \). This converges to 0 as long as \(d/n \to 0 \).
Basic Decomposition and Sketch proof of Thm 2.1
The proof for Theorem 2.1 starts with approximating the indicator function 1_A for a convex set A by an appropriate smooth function h. Then, the problem amounts to establishing an appropriate bound for $\mathbb{E} h(W) - \mathbb{E} h(Z)$.

To accomplish this, we will make use of a decomposition of $\mathbb{E} h(W) - \mathbb{E} h(Z)$ derived from the exchangeable pair approach in Stein’s method for multivariate normal approximation by Chatterjee and Meckes (2008).
Stein’s Equation

Lemma (cf. Götze (1991) and Meckes (2009))

Given a twice differentiable function $h : \mathbb{R}^d \to \mathbb{R}$ with bounded partial derivatives, we consider the Stein equation

$$\langle \text{Hess} f(w), \Sigma \rangle_{H.S.} - w \cdot \nabla f(w) = h(w) - \mathbb{E}h(Z), \quad w \in \mathbb{R}^d \quad (6)$$

then

$$f(w) = \int_0^1 -\frac{1}{2(1-s)} \int_{\mathbb{R}^d} \left[h \left(\sqrt{1-sw} + \sqrt{s\Sigma^{1/2}}z \right) - \mathbb{E}h(Z) \right] \phi(z) dz ds \quad (7)$$

is a solution to (6).
The basic decomposition assumes that f is thrice differentiable with bounded partial derivatives. This is true if Σ is invertible or h is thrice differentiable with bounded partial derivatives.

Let $\{\xi'_1, \ldots, \xi'_n\}$ be an independent copy of $\{\xi_1, \ldots, \xi_n\}$, and let I be a random index uniformly chosen from $\{1, \ldots, n\}$ and independent of $\{\xi_1, \ldots, \xi_n, \xi'_1, \ldots, \xi'_n\}$. Define

$$W' = W - \xi_I + \xi'_I$$

It is easy to verify that (W, W') has the same distribution as (W', W) (exchangeability) and

$$\mathbb{E} (W' - W | W) = -\frac{W}{n} \quad (8)$$
Basic Decomposition

From exchangeability and (8) we have, with $D = W' - W$

$$0 = \frac{n}{2} \mathbb{E} \left[D \cdot (\nabla f (W') + \nabla f (W)) \right]$$

$$= \mathbb{E} \left[\frac{n}{2} D \cdot (\nabla f (W') - \nabla f (W)) + nD \cdot \nabla f (W) \right]$$

$$= \mathbb{E} \left[\frac{n}{2} \sum_{j,k=1}^{d} D_j D_k \partial_{jk} f (W) + R_2 + nD \cdot \nabla f (W) \right]$$

$$= \mathbb{E} \left[\langle \text{Hess } f (W), \Sigma \rangle_{H.S.} - R_1 + R_2 - W \cdot \nabla f (W) \right]$$
Basic Decomposition

where

\[R_1 = \sum_{j,k=1}^{d} \mathbb{E} \left\{ \left(\Sigma_{jk} - \frac{n}{2} D_j D_k \right) \partial_{jk} f(W) \right\} \tag{10} \]

and

\[R_2 = \frac{n}{2} \sum_{j,k,l=1}^{d} \mathbb{E} D_j D_k D_l U \partial_{jkl} f(W + (1 - U)D) \tag{11} \]

and \(U \) is a uniform random variable on \([0, 1]\) independent of everything else. From (6) and (9) we have

\[\mathbb{E} h(W) - \mathbb{E} h(Z) = R_1 - R_2 \tag{12} \]
Basic Decomposition

We further rewrite R_1 and R_2 respectively as follows (this requires some complicated calculation). First, set

$$V = (V_{jk})_{1 \leq j, k \leq d} := \left(\mathbb{E} \left[\Sigma_{jk} - \frac{n}{2} D_j D_k \mid \xi \right] \right)_{1 \leq j, k \leq d}$$

Then we evidently have

$$R_1 = \sum_{j, k=1}^{d} \mathbb{E} V_{jk} \partial_{jk} f(W) = \mathbb{E} \langle V, \text{Hess } f(W) \rangle_{H.S.} \quad (13)$$

Also, one can verify that (cf. Eq. (22) of Chernozhukov, Chetverikov and Kato (2014)) (we will use this result to bound R_1 later)

$$V = \Sigma - \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\xi_i \xi_i^\top \right] - \frac{1}{2} \sum_{i=1}^{n} \xi_i \xi_i^\top$$

$$= (\Sigma - \text{Var}(W)) - \frac{1}{2} \sum_{i=1}^{n} \left(\xi_i \xi_i^\top - \mathbb{E} \left[\xi_i \xi_i^\top \right] \right) \quad (14)$$
Next, by exchangeability we have

\[
\mathbb{E} \left[D_j D_k D_l U \partial_{jkl} f (W + (1 - U)D) \right] \\
= - \mathbb{E} \left[D_j D_k D_l U \partial_{jkl} f (W' - (1 - U)D) \right] \quad (15)
\]

\[
= - \mathbb{E} \left[D_j D_k D_l U \partial_{jkl} f (W + UD) \right]
\]

and also

\[
R_2 = \frac{n}{4} \sum_{j,k,l=1}^{d} \mathbb{E} \left[D_j D_k D_l U \left\{ \partial_{jkl} f (W + (1 - U)D) - \partial_{jkl} f (W + UD) \right\} \right] \quad (16)
\]
Basic Decomposition

If f is thrice differentiable with bounded partial derivatives, then

$$\mathbb{E} h(W) - \mathbb{E} h(Z) = R_1 - R_2$$

where

$$R_1 = \sum_{j,k=1}^{d} \mathbb{E} V_{jk} \partial_{jk} f(W) = \mathbb{E} \langle V, \text{Hess} f(W) \rangle_{H.S.}$$

$$R_2 = \frac{n}{4} \sum_{j,k,l=1}^{d} \mathbb{E} [D_j D_k D_l U \{ \partial_{jkl} f(W + (1 - U)D) - \partial_{jkl} f(W + UD) \}]$$

and

$$V = \Sigma - \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\xi_i \xi_i^T \right] - \frac{1}{2} \sum_{i=1}^{n} \xi_i \xi_i^T$$

$$= (\Sigma - \text{Var}(W)) - \frac{1}{2} \sum_{i=1}^{n} \left(\xi_i \xi_i^T - \mathbb{E} \left[\xi_i \xi_i^T \right] \right)$$
Main Theorem

Theorem (2.1)

Let \(\xi = \{\xi_i\}_{i=1}^n \) be a sequence of centered independent random vectors in \(\mathbb{R}^d \) with finite fourth moments and set \(W = \sum_{i=1}^n \xi_i \). Assume \(\text{Var}(W) = \Sigma \) and \(\Sigma \) is invertible. Let \(Z \sim N(0, \Sigma) \) be a centered Gaussian vector in \(\mathbb{R}^d \) with covariance matrix \(\Sigma \). Then,

\[
\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leq C d^{1/4} \left(\sum_{i=1}^n \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right)^{1/2} \left(\log \left(\sum_{i=1}^n \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right) \right) \vee 1
\]

where \(\mathcal{A} \) is the collection of all measurable convex sets in \(\mathbb{R}^d \).
Main Idea behind the Proof for Theorem 2.1

▶ Since $\Sigma^{-1/2}W = \sum_{i=1}^{n} \Sigma^{-1/2} \xi_i$ and $\{\Sigma^{-1/2}x : x \in A\} \in \mathcal{A}$ for all $A \in \mathcal{A}$, it suffices to consider the case $\Sigma = I_d$.

▶ Fix $\beta_0 > 0$. Define

$$K(\beta_0) = \sup_W \sup_{A \in \mathcal{A}} \left| \mathbb{P}(W \in A) - \mathbb{P}(Z \in A) \right| \max \left\{ \beta_0, \left(\sum_{i \in \mathcal{I}} \mathbb{E} |\xi_i|^4 \right)^{1/2} \left(\left| \log \left(\sum_{i \in \mathcal{I}} \mathbb{E} |\xi_i|^4 \right) \right| \lor 1 \right) \right\}$$

where the first supremum is taken over the family of all sums $W = \sum_{i \in \mathcal{I}} \xi_i$ of finite number of independent mean-zero random vectors with $\mathbb{E} |\xi_i|^4 < \infty$ and $\text{Var}(W) = I_d$.

▶ We will obtain a recursive inequality for $K(\beta_0)$ and prove that

$$K(\beta_0) \leq C d^{1/4}$$

for an absolute constant C that does not depend on β_0. Equation (3) then follows by sending $\beta_0 \to 0$.
Proof of Theorem 2.1

Now we fix a $W = \sum_{i=1}^{n} \xi_i$, $n \geq 1$, in the aforementioned family

$$\bar{\beta} = \max \left\{ \beta_0, \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right)^{1/2} \left(\log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right) \vee 1 \right) \right\}. $$

(20)

and for $A \in \mathcal{A}$, $\varepsilon > 0$, define

$$A^\varepsilon = \left\{ x \in \mathbb{R}^d : \text{dist}(x, A) \leq \varepsilon \right\} \quad \text{dist}(x, A) = \inf_{y \in A} |x - y|$$

To proceed, we need some technical lemmas.
Technical Lemmas

(Lemma 2.3 of Bentkus (2003))

Lemma (2)

For any $A \in \mathcal{A}$ and $\varepsilon > 0$, there exists a function $h_{A, \varepsilon}$ (which depends only on A and ε) such that

$h_{A, \varepsilon}(x) = 1$ for $x \in A$, \quad $h_{A, \varepsilon}(x) = 0$ for $x \in \mathbb{R}^d \setminus A^\varepsilon$, \quad $0 \leq h_{A, \varepsilon}(x) \leq 1$

and

$$M_1 \left(h_{A, \varepsilon} \right) \leq \frac{C}{\varepsilon}, \quad M_2 \left(h_{A, \varepsilon} \right) \leq \frac{C}{\varepsilon^2} \quad (21)$$

where C is an absolute constant that does not depend on A and ε.
Technical Lemmas

(Theorem 4 of Ball (1993))

Lemma (3)
Let ϕ be the standard Gaussian density on \mathbb{R}^d, $d \geq 2$, and let A be a convex set in \mathbb{R}^d. Then

$$\int_{\partial A} \phi \leq 4d^{1/4} \quad (22)$$
Technical Lemmas

Using Lemma 3, one can show following lemmas of bounding the target difference between W and Z (Lemma 4.2 of Fang and Rollin (2015)).

Lemma (4)

For any d-dimensional random vector W and any $\varepsilon > 0$,

$$
\sup_{A \in \mathcal{A}} \left| \mathbb{P}(W \in A) - \mathbb{P}(Z \in A) \right| \leq 4d^{1/4} \varepsilon + \sup_{A \in \mathcal{A}} \left| \mathbb{E} h_{A,\varepsilon}(W) - \mathbb{E} h_{A,\varepsilon}(Z) \right|
$$

(23)

where $h_{A,\varepsilon}$ is as in Lemma 2.
Before we proceed, we provide the outline of the remaining proof.

- Using equation (23) in lemma 4, we can bound
 \[\sup_{A \in A} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \]
 by bounding
 \[\sup_{A \in A} |\mathbb{E}h_{A,\varepsilon}(W) - \mathbb{E}h_{A,\varepsilon}(Z)|. \]

- Then we can use basic decomposition to bound
 \[\sup_{A \in A} |\mathbb{E}h_{A,\varepsilon}(W) - \mathbb{E}h_{A,\varepsilon}(Z)| \]
 by considering \(R_1 \) and \(R_2 \) respectively.

- \(R_1 \) can be decomposed further into \(R_{11} + R_{12} \), and each term
 can be bounded directly.

- To bound \(R_2 \), we divide into two cases. In the first case,
 \(R_2 = R_{21} + R_{22} \) and we can bound two terms respectively.
 Besides, we will see the second case is trivial.
We now fix \(A \in \mathcal{A} \) (will take sup later), \(0 < \varepsilon \leq 1 \), write \(h := h_{A,\varepsilon} \) and proceed to bound \(|\mathbb{E}h(W) - \mathbb{E}h(Z)|\) by the basic decomposition (12). Consider the solution \(f \) to the Stein equation (6) with \(\Sigma = I_d \)

\[
f(w) = \int_0^1 -\frac{1}{2(1-s)} \int_{\mathbb{R}^d} \left[h\left(\sqrt{1-sw} + \sqrt{sz}\right) - \mathbb{E}h(Z)\right] \phi(z)dzds
\]

Since \(h \) has bounded partial derivatives up to the second order and \(\Sigma = I_d \) is invertible, \(f \) is thrice differentiable with bounded partial derivatives. Using the integration by parts formula, we have for \(1 \leq j, k, l \leq d \) and any constant \(0 \leq c_0 \leq 1 \) that
Proof Continued

\[\partial_{jk} f(w) = \int_0^c 1 \int_{\mathbb{R}^d} \partial_j h(\sqrt{1 - sw + \sqrt{sz}}) \partial_k \phi(z) dz \, ds \]
\[+ \int_0^1 - \frac{1}{2s} \int_{\mathbb{R}^d} h(\sqrt{1 - sw + \sqrt{sz}}) \partial_{jk} \phi(z) dz \, ds \]

(24)

and

\[\partial_{jkl} f(w) = \int_0^c \sqrt{1 - s} \int_{\mathbb{R}^d} \partial_{jk} h(\sqrt{1 - sw + \sqrt{sz}}) \partial_l \phi(z) dz \, ds \]
\[+ \int_0^1 - \frac{\sqrt{1 - s}}{2s} \int_{\mathbb{R}^d} \partial_j h(\sqrt{1 - sw + \sqrt{sz}}) \partial_{kl} \phi(z) dz \, ds \]

(25)
Now, using the expression of $\partial_{jk} f$ in (24) with $c_0 = \varepsilon^2$, we have

$$R_1 = R_{11} + R_{12}$$

where

$$R_{11} = \sum_{j,k=1}^{d} \mathbb{E} \left[V_{jk} \int_0^{\varepsilon^2} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^d} \partial_j h(\sqrt{1-sW} + \sqrt{s}z) \partial_k \phi(z) dz ds \right]$$

and

$$R_{12} = \sum_{j,k=1}^{d} \mathbb{E} \left[V_{jk} \int_{\varepsilon^2}^{1} - \frac{1}{2s} \int_{\mathbb{R}^d} h(\sqrt{1-sW} + \sqrt{s}z) \partial_{jk} \phi(z) dz ds \right]$$
Proof Continued

To proceed, we will utilize the following lemma (Lemma 4.3 of Fang and Röllin (2015)).

Lemma (5)

For $k \geq 1$ and each map $a : \{1, \ldots, d\}^k \to \mathbb{R}$, we have

$$
\int_{\mathbb{R}^d} \left(\sum_{i_1, \ldots, i_k=1}^d a(i_1, \ldots, i_k) \frac{\partial_{i_1 \ldots i_k} \phi(z)}{\phi(z)} \right)^2 \phi(z)dz \leq k! \sum_{i_1, \ldots, i_k=1}^d (a(i_1, \ldots, i_k))^2
$$

(26)
Bound for R_{11}

For R_{11}, we use the Cauchy-Schwarz inequality and the bounds in lemma 2 and lemma 5 and obtain

$$|R_{11}| = \left| \int_0^{\varepsilon^2} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^d} \mathbb{E} \sum_{j=1}^d \partial_j h(\sqrt{1-sW} + \sqrt{s}z) \sum_{k=1}^d V_{jk} \frac{\partial_k \phi(z)}{\phi(z)} \phi(z) dz ds \right|$$

$$\leq C \frac{1}{\varepsilon} \int_0^{\varepsilon^2} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^d} \mathbb{E} \left\{ \sum_{j=1}^d \left(\sum_{k=1}^d V_{jk} \frac{\partial_k \phi(z)}{\phi(z)} \right)^2 \right\}^{1/2} \phi(z) dz ds$$

$$\leq C \frac{1}{\varepsilon} \int_0^{\varepsilon^2} \frac{1}{2\sqrt{s}} \left\{ \int_{\mathbb{R}^d} \mathbb{E} \sum_{j=1}^d \left(\sum_{k=1}^d V_{jk} \frac{\partial_k \phi(z)}{\phi(z)} \right)^2 \phi(z) dz \right\}^{1/2} ds$$

$$\leq C \frac{1}{\varepsilon} \int_0^{\varepsilon^2} \frac{1}{2\sqrt{s}} \left\{ \mathbb{E} \sum_{j=1}^d \sum_{k=1}^d V_{jk}^2 \right\}^{1/2} ds \leq C \left\{ \sum_{j,k=1}^d \mathbb{E} V_{jk}^2 \right\}^{1/2}$$

(27)
Bound for R_{11}

Recall that $\text{Var}(W) = \Sigma$ and

$$V = \Sigma - \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\xi_i \xi_i^\top \right] - \frac{1}{2} \sum_{i=1}^{n} \xi_i \xi_i^\top$$

$$= (\Sigma - \text{Var}(W)) - \frac{1}{2} \sum_{i=1}^{n} \left(\xi_i \xi_i^\top - \mathbb{E} \left[\xi_i \xi_i^\top \right] \right)$$

we have

$$\mathbb{E} V_{jk}^2 = \frac{1}{4} \text{Var} \left[\sum_{i=1}^{n} \xi_{ij} \xi_{ik} \right] = \frac{1}{4} \sum_{i=1}^{n} \text{Var} \left[\xi_{ij} \xi_{ik} \right] \leq \frac{1}{4} \sum_{i=1}^{n} \mathbb{E} \left[\xi_{ij}^2 \xi_{ik}^2 \right]$$
Bound for R_{11}

and therefore,

$$|R_{11}| \leq C \left\{ \sum_{j,k=1}^{d} \sum_{i=1}^{n} \mathbb{E} \left[\xi_{ij}^2 \xi_{ik}^2 \right] \right\}^{1/2}$$

$$= C \left\{ \sum_{i=1}^{n} \mathbb{E} \left[\sum_{j=1}^{d} \xi_{ij}^2 \right]^2 \right\}^{1/2}$$

$$= C \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right)^{1/2}$$
Bound for R_{12}

Applying similar arguments, we have, for R_{12},

$$
|R_{12}| \leq \int_0^1 \frac{1}{2s} \left\{ \int_{\mathbb{R}^d} \mathbb{E} \left[\sum_{j,k=1}^d V_{jk} \frac{\partial_{jk} \phi(z)}{\phi(z)} \right]^2 \phi(z) dz \right\}^{1/2} ds \\

\leq C \int_0^1 \frac{1}{2s} \left\{ \mathbb{E} \sum_{j,k=1}^d V_{jk}^2 \right\}^{1/2} ds \leq C \log \varepsilon \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4 \right)^{1/2}
$$

therefore,

$$
|R_1| \leq C (\log \varepsilon \vee 1) \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4 \right)^{1/2}
$$
Bound for R_2

Next, we bound R_2. Take $0 < \eta \leq 1$ arbitrarily. Using the expression of $\partial_{jkl} f$ in (25) with $c_0 = \eta^2$ and in this case, we have

$$R_2 = R_{21} + R_{22}$$

where

$$R_{21} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j,k,l=1}^{d} \mathbb{E} U (\xi'_{ij} - \xi_{ij}) (\xi'_{ik} - \xi_{ik}) (\xi'_{il} - \xi_{il}) \int_0^{\eta^2} \frac{\sqrt{1-s}}{2\sqrt{s}}$$

$$\times \int_{\mathbb{R}^d} \partial_{jk} h \left(\sqrt{1-s} (W + (1-U)(\xi'_i - \xi_i)) + \sqrt{s}z \right) \partial_l \phi(z) dz ds$$
Bound for R_2

and

$$R_{22} = \frac{1}{4} \sum_{i=1}^{n} \sum_{j,k,l,m=1}^{d} \mathbb{E} U (1 - 2U) (\xi_{ij}' - \xi_{ij}) (\xi_{ik}' - \xi_{ik}) (\xi_{il}' - \xi_{il}) (\xi_{im}' - \xi_{im})$$

$$\times \int_{\eta^2}^{1} \int_{-\frac{1-s}{2s}}^{\frac{1-s}{2s}} \partial_{jm} h_{22} \partial_{kl} \phi(z) dz ds$$

(30)

where

$$h_{22} = h \left(\sqrt{1-s} \left(W + (U + (1-2U)U') \left(\xi_i' - \xi_i \right) \right) + \sqrt{s}z \right)$$

and U' is a uniform random variable on $[0, 1]$ independent of everything else.
Bound for R_2

Set $\beta_* = 0.19$ and $\sigma_* = (1 - \beta_*)^{1/2} = 0.9$. Recall that

$$\bar{\beta} = \max \left\{ \beta_0, \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right)^{1/2} \left| \log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right) \right| \vee 1 \right\}$$

We now discuss the proof in following cases

- **Case-1:** $\bar{\beta} \leq \beta_*/d^{1/4}$
- **Case-2:** $\bar{\beta} > \beta_*/d^{1/4}$

The settings for β_* and σ_* will be used in bounding R_{21} and R_{22} with some specific calculation. We will skip these calculations and present the results directly.
Bound for R_2: Case-1: $\bar{\beta} \leq \beta_*/d^{1/4}$

In this case, we have for any $0 < \eta \leq 1$ and any $\varepsilon > 0$

$$|R_{21}| \leq \frac{C}{\varepsilon^2} \sum_{i=1}^{n} \mathbb{E} |\xi_i|^3 \left(d^{1/4} \varepsilon + K (\beta_0) \bar{\beta} \right) \eta$$

(31)

and

$$|R_{22}| \leq \frac{C}{\varepsilon^2} \sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \left(d^{1/4} \varepsilon + K (\beta_0) \bar{\beta} \right) |\log \eta|$$

(32)
Bound for R_2: Case-1: $\bar{\beta} \leq \beta_*/d^{1/4}$

By choosing appropriate η

$$\eta = \begin{cases} \frac{\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4}{\sum_{i=1}^{n} \mathbb{E} |\xi_i|^3} & \text{if } \sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 < \sum_{i=1}^{n} \mathbb{E} |\xi_i|^3 \\ 1 & \text{otherwise} \end{cases}$$

Hence, we have

$$|R_{21}| + |R_{22}| \leq \frac{C}{\varepsilon^2} \sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \left(d^{1/4} \varepsilon + K(\beta_0) \bar{\beta} \right)$$

$$\times \left(\left| \log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right) \right| \lor 1 \right) \quad (33)$$
Bound for R_2: Case-1: $\bar{\beta} \leq \beta_*/d^{1/4}$

Therefore, in this case

$$\sup_{A \in A} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)|$$

$$\leq 4d^{1/4}\varepsilon + C(|\log \varepsilon| \lor 1) \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right)^{1/2}$$

$$+ \frac{C}{\varepsilon^2} \sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \left(d^{1/4}\varepsilon + K(\beta_0) \bar{\beta} \right) \left(|\log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right) | \lor 1 \right)$$

Choose

$$\varepsilon = \min \left\{ \left[2C \sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \left(|\log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right) | \lor 1 \right) \right]^{1/2}, 1 \right\}$$

with the same absolute constant C as in the third term on the right-hand side of (34)
Bound for R_2: Case-1: $\bar{\beta} \leq \beta_*/d^{1/4}$

If $\varepsilon < 1$, then (34) can be simplified to

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leq \left(C d^{1/4} + \frac{K(\beta_0)}{2}\right) \bar{\beta}$$

hence

$$\sup_{A \in \mathcal{A}} \frac{|\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)|}{\bar{\beta}} \leq C d^{1/4} + \frac{K(\beta_0)}{2} \quad (35)$$

If $\varepsilon = 1$, then $\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4$ and $\bar{\beta}$ are bounded away from 0 by an absolute constant; hence

$$\sup_{A \in \mathcal{A}} \frac{|\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)|}{\bar{\beta}} \leq \frac{2}{\bar{\beta}} \leq C \quad (36)$$
Bound for R_2: Case-2: $\bar{\beta} > \beta_*/d^{1/4}$

We trivially estimate

$$\sup_{A \in \mathcal{A}} \left| \mathbb{P}(W \in A) - \mathbb{P}(Z \in A) \right| \leq \frac{2}{\bar{\beta}} \leq \frac{2d^{1/4}}{\beta_*} \leq Cd^{1/4} \quad (37)$$
Proof of Theorem 2.1

Combining both cases together, we have

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(\mathcal{W} \in A) - \mathbb{P}(\mathcal{Z} \in A)| \leq \frac{Cd^{1/4}}{\beta} + \frac{K(\beta_0)}{2}$$

Note that the right-hand side of the above bound does not depend on \mathcal{W}. Taking supremum over \mathcal{W}, we obtain

$$K(\beta_0) \leq Cd^{1/4} + \frac{K(\beta_0)}{2} \quad (38)$$

which completes the proof.
Proof of Theorem 2.2

The proof of Theorem 2.2 is quite similar to that of Theorem 2.1. It is enough to prove (4) when Σ is diagonal with positive entries. Fix $\beta_0 > 0$. Define

$$K'(\beta_0) = \sup_{W, \Sigma} \sup_{A \in \mathcal{B}} \frac{\left| \mathbb{P}(W \in A) - \mathbb{P}(\Sigma^{1/2}Z_0 \in A) \right|}{\max \{\beta_0, \psi(\delta(W, \Sigma))\}}$$ (39)

where $Z_0 \sim \mathcal{N}(0, I_d)$ and the first supremum is taken over the family of all sums $W = \sum_{i \in I} \xi_i$ of finite number of independent centered random vectors with $\mathbb{E}|\xi_i|^4 < \infty$, and diagonal matrices Σ with positive entries. We will obtain a recursive inequality for $K'(\beta_0)$ and prove that

$$K'(\beta_0) \leq C$$ (40)

for an absolute constant C that does not depend on β_0. Equation (4) then follows by sending $\beta_0 \to 0$.
Applications on the bootstrap
Empirical bootstrap approximation for $\mathbb{P}(W \in A)$

- X_1, \ldots, X_n: be a sequence of centered independent vectors in \mathbb{R}^d with finite fourth moments. $W := n^{-1/2} \sum_{i=1}^n X_i$, $\Sigma := \text{Var}(W)$, $Z \sim N(0, \Sigma)$. X_1^*, \ldots, X_n^*: be i.i.d. draws from the empirical distribution of X
- $W^* := \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i^* - \bar{X})$, where $\bar{X} := \frac{1}{n} \sum_{i=1}^n X_i$
- The bootstrap analog of Theorem 2.3 is given by:

Theorem (4.1)

If $\text{tr}(\Sigma^2) > 0$, for any $K > 0$, we have

$$
\mathbb{P} \left(\sup_{A \in \mathcal{B}} |\mathbb{P}(W^* \in A|X) - \mathbb{P}(Z \in A)| > K \sqrt{\Delta_n} \right) \leq \frac{C}{K^2} \quad (41)
$$

where

$$
\Delta_n := \frac{1}{n \text{tr}(\Sigma^2)^{1/2}} \left(\sqrt{\sum_{i=1}^n \mathbb{E} |X_i|^4} + \sum_{j=1}^d \sqrt{\sum_{i=1}^n \mathbb{E} [X_{ij}^4]} \right)
$$
Remark of Theorem 4.1

- Compared to the non-asymptotic bound for the quantity of $\sup_{A \in \mathcal{B}} |\mathbb{P}(W^* \in A | X) - \mathbb{P}(Z \in A)|$ under additional distribution assumption on X_i. Ours Theorem 4.1 provides better dependence on the dimension $d (d = o(n) \text{ v.s. } d = o(n^{1/2}))$, at least when $\Sigma = I_d$;

- Our result allows Σ to be singular;

- It’s possible to give a non-asymptotic version of equation 41 but an exponential concentration if we also assume X_i are sub-Gaussian.
Wild bootstrap approximation for $\mathbb{P}(W \in A)$

Let $\{e_i\}_{i=1}^n$ be i.i.d. variables independent of $\{X_i\}_{i=1}^n$ with $\mathbb{E}e_1 = 0, \mathbb{E}e_1^2 = 1, \mathbb{E}e_1^4 < \infty$.

The $W^o := \frac{1}{\sqrt{n}} \sum_{i=1}^n e_i X_i$. is the wild bootstrap approximation of W with multiplier variables e_1, \ldots, e_n.

Theorem (4.2)

If $\text{tr}(\Sigma^2) > 0$, for any $K > 0$, we have

$$
\mathbb{P} \left(\sup_{A \in B} |\mathbb{P}(W^o \in A|X) - \mathbb{P}(Z \in A)| > K(\mathbb{E}e_1^4)^{1/4} \sqrt{\Delta_n} \right) \leq \frac{C}{K^2}
$$

(42)

where Δ_n is defined in 4.1
Remark of Theorem 4.2

Compared to the non-asymptotic bound for the quantity of $\sup_{A \in B} |\mathbb{P}(W^o \in A|X) - \mathbb{P}(Z \in A)|$ under additional distribution assumption on X_i. Our Theorem 4.2 provides better dependence on the n and $d(O(d/n)^{1/4}$ v.s. $O(d^2/n)^{1/5})$);

Ours does not require the **unit skewness assumption** $\mathbb{E}e_1^3 = 1$ on the multiplier variables;
Thank you!