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Abstract

Lifelong reinforcement learning (RL) has
been developed as a paradigm for extend-
ing single-task RL to more realistic, dynamic
settings. In lifelong RL, the "life" of an
RL agent is modeled as a stream of tasks
drawn from a task distribution. We propose
EPIC (Empirical PAC-Bayes that Improves
Continuously), a novel algorithm designed for
lifelong RL using PAC-Bayes theory. EPIC
learns a shared policy distribution, referred to
as the world policy, which enables rapid adap-
tation to new tasks while retaining valuable
knowledge from previous experiences. Our
theoretical analysis establishes a relationship
between the algorithm’s generalization per-
formance and the number of prior tasks pre-
served in memory. We also derive the sample
complexity of EPIC in terms of RL regret.
Extensive experiments on a variety of envi-
ronments demonstrate that EPIC significantly
outperforms existing methods in lifelong RL,
offering both theoretical guarantees and prac-
tical efficacy through the use of the world
policy.

1 Introduction

Deep reinforcement learning (RL) has excelled in chal-
lenging tasks including abstract strategy games (Silver
et al., 2017, 2016), visual navigation (Zhu et al., 2017),
and control (Mnih et al., 2015; Lillicrap et al., 2015).
However, RL is a data intensive learning paradigm,
therefore training a policy for every task from scratch
is computationally expensive and time-consuming. In
reality, many tasks an agent encounters are not entirely
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novel but instead belong to a broader task distribu-
tion, meaning they share commonalities that can be
leveraged. This insight highlights the inefficiency of
retraining for every individual task. Lifelong RL, also
known as continual RL, emerges as a promising frame-
work where an agent interacts with a sequence of tasks,
continuously adapting and improving its policy by lever-
aging knowledge from past task instances (Khetarpal
et al., 2022).

In lifelong RL, an agent’s objectives are primarily to
achieve fast adaptation with limited samples and
effective knowledge retention (Abel et al., 2024). In
other words, lifelong RL agents experience a stability-
plasticity dilemma, where the agent must balance re-
taining useful long-term knowledge with the ability to
rapidly adapt to new situations.

Recent methods addressing knowledge retention and
transfer in lifelong RL include Q-value function transfer
(Lecarpentier et al., 2021), optimizing Q-value func-
tion initialization (Abel et al., 2018), decomposing the
value function into permanent and transient compo-
nents (Anand and Precup, 2023), reusing knowledge by
sampling from past experiences (Kessler et al., 2023),
detecting change points in rewards and environment
dynamics(Steinparz et al., 2022), and using a Bayesian
approach to learn a common task distribution for better
data efficiency and transfer (Fu et al., 2022).

In lifelong RL, domain shifts induce non-stationarity,
which occurs not only due to changing transition
dynamics and reward functions, but also through
variations in available actions or decisions over
time(Boutilier et al., 2018; Chandak et al., 2020). Such
scenarios are common in real-world applications. For
example, in robotics, additional control components
are integrated throughout the robot’s lifetime, and in
medical decision support systems, new treatments and
medications must be incorporated.

Furthermore, tasks encountered over an agent’s lifetime
can be highly diverse, yet certain high-level strategies
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that can be shared across tasks. Not only should the
world model (Ha and Schmidhuber, 2018; Fu et al.,
2022; Anand and Precup, 2023), which captures the
general knowledge distribution of tasks, be continuously
refined, but it is also crucial for an agent to develop a
world policy. The key consideration of this world policy
is to adapt the parameters of the policy so they are
captured by a global distribution, which represents the
uncertainty over policy parameters. This allows for
better generalization and adaptability across tasks.

Motivated by the above need, we raise two questions:

1. Can we extract the common structure present in
policies from previously encountered tasks, allow-
ing the agent to quickly learn the policy specific to
new task to enable fast adaptation with theoretical
guarantees?

2. How many samples are required to achieve a given
level of performance?

To answer these two questions, we develop a unified
framework based on a Bayesian method that learns a
rapidly adaptable policy distribution from past tasks,
retaining valuable information while remaining capable
of quickly adapting to unseen situations.

We also provide a theoretical analysis of the algorithm’s
generalization performance relative to the number of
effective tasks and retained knowledge in the finite
Markov Decision Process (MDP) setting, along with
its sample complexity to demonstrate efficiency.

When addressing the first question, we must also ac-
count for both catastrophic forgetting and generalizabil-
ity – the aforementioned stability-plasticity dilemma.
Agents that can quickly solve traditional RL problems
risk abruptly losing performance on tasks they have
seen before due to their flexibility or plasticity. On the
other hand, agents that do not forget any of their past
experience may give up a measure of their plasticity.
These issues are central in lifelong RL, and can be
approached from a Bayesian perspective (Khetarpal
et al., 2022). Bayesian methods have been applied to
meta learning (Amit and Meir, 2018), lifelong learning
for bandits (Flynn et al., 2022), and learning controls
for robots in multiple environments (Majumdar et al.,
2021), aiming to learn a fast adapted policy. Instead of
learning a specific policy, we leverage the PAC-Bayes
theory to learn a distribution of policy hypotheses
shared across multiple tasks. Further details about
PAC-Bayes theory can be found in Section 2.3 and the
Related Works section in Appendix §B. When a new
task arises, we can initialize a policy hypothesis by sam-
pling from this learned distribution. A well-constructed
distribution of hypotheses promotes effective long-term
memory, mitigating catastrophic forgetting. Unlike

prior methods, we sample a random policy function
according to this distribution. This function sampling
approach is seen in modern popular deep learning meth-
ods, for example, in-context learning(Garg et al., 2022).

For the second question, an agent has to keep learning
as well as forgetting. Too much experienced knowledge
kept in memory may decrease the learning efficiency,
while too little may be insufficient to learn an effective
policy distribution. To address the second question,
we derive a relationship between the performance of
our algorithm and the number of experienced tasks
(denoted as N in a later section) that need to be re-
tained in the agent’s memory, based on PAC-Bayes
theory. We use the negative expected long term re-
wards, where the expectation is taken with respect to
tasks and policies (also known as the generalization
error), as a measure of the algorithm’s performance
from a statistical perspective.

From our theoretical result, where we provide an ex-
pression of this relationship, we discovered a trade-off
between this value and the algorithm’s performance,
which aligns with natural intuition, a double sided ef-
fect. In practice, our expression allows us to optimize
the performance of our algorithm by optimizing N ,
although we recommend using hyperparameter tuning.
Furthermore, to demonstrate the efficiency of our al-
gorithm, we derive its sample complexity from a RL
regret perspective, showing that our algorithm learns
an optimal policy as more tasks encountered.

Our Contributions. In this work, we introduce a
novel PAC-Bayes framework tailored to lifelong RL,
addressing critical challenges including changing deci-
sions, catastrophic forgetting and efficient knowledge
retention. Our contributions are summarized as follows:

• We propose EPIC (Empirical PAC-Bayes that
Improves Continuously), a lifelong RL algorithm
that leverages PAC-Bayes theory to learn a shared
policy distribution, referred to as the world pol-
icy. This world policy enables the agent to quickly
adapt to new tasks while retaining useful knowl-
edge from past experiences, providing theoretical
guarantees of generalization across tasks.

• We derive a novel PAC-Bayes bound for lifelong
RL and provide a theoretical analysis that links
long-term rewards to the number of retained past
tasks, ensuring a balance between memory usage
and performance across diverse tasks. We provide
a sample complexity of our approach in terms of
RL regret.

• We evaluate EPIC through extensive numerical ex-
periments with common lifelong RL benchmarks,
as well as additional environments we created. Our
results show EPIC outperforms prior methods.
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These results underscore EPIC’s effectiveness in
lifelong learning scenarios, offering a robust and
theoretically grounded solution for continual adap-
tation in RL.

2 Preliminaries

2.1 Reinforcement Learning

In RL, an agent interacts with the environment by
taking actions, observing states and receiving rewards.
The environment is modeled by a Markov Decision
Process (MDP), which is denoted by a tuple M =
⟨S,A, T,R, γ, ν⟩, where S is the state space, A is the
action space, T is the transition kernel, R is the reward
function, γ ∈ (0, 1) is the discount factor, and ν is the
initial state distribution.

A trajectory τ ∼ π generated by policy π is a se-
quence s1, a1, r1, s2, a2, · · · , where s1 ∼ ν, at ∼ π(a|st),
st+1 ∼ T (s|st, at) and rt = R(st, at). The goal of an
RL agent is to find an optimal policy π∗ that maxi-
mizes the expected total rewards J(π) = Eτ∼π[r(τ)] =
Es1,a1,···∼ν,π,T,R[

∑∞
t=1 γ

t−1rt].

2.2 Lifelong Reinforcement Learning

In lifelong RL, the agent interacts with a (potentially
infinite) sequence of tasks, which come from an under-
lying task distribution(Khetarpal et al., 2022), denoted
as Di, i = 1, . . . ,∞. Suppose that tasks share the same
γ, but may have different S,A, transition probabilities
T and rewards R. The learning process is:

1. Initialize a policy π0;
2. Sample a task (MDP)Mi ∼ Di;
3. Starting from π0, learn a policy πi for taskMi to

maximize rewards.

An effective lifelong RL agent should quickly adapt to
new tasks that it encounters throughout its life.

2.3 PAC-Bayes Theory

PAC-Bayes analysis applies to learning algorithms that
output a distribution over hypotheses h ∈ H. This
refers to h is sampled independently from a distribu-
tion over functions in a function class H. For example,
for a linear predictor of d dimension, h(x) =

〈
w, x

〉
,

we let w ∼ N(0, Id). Generally, such algorithms will
be given a prior distribution P ∈ P at the begin-
ning and learn a posterior distribution P ∈ P af-
ter observing training data samples {zi}Ni=1. We de-
fine the expected loss (generalization error) lD(P ) =
Eh∼P [Ez∼D [h(z)]], and the empirical loss (training er-
ror) lS(P ) = Eh∼P

[
1
N

∑N
i=1 h(zi)

]
, which are under

the expectation of hypothesis h ∼ P .

The main application of PAC-Bayes analysis in ma-
chine learning is to produce high-confidence bounds

for the true or generalization error in terms of the
training error plus R(DKL(P∥P )), which is a function
of the KL divergence between the prior and posterior
distributions, as shown below (McAllester, 1999),

lD(P ) ≤ U(P ) := lS(P ) + R(DKL(P∥P )), (1)

with

R(DKL(P∥P ))

:=

√
1

2N

[
DKL (P∥P ) + log

(
2N1/2/δ

)]
,

(2)

where U(P ) in right-hand side of Equation (1) is called
the generalization error bound that depends on P , and
minimization of this bound leads to generalization error
guarantees.

3 Methods
We propose a PAC-Bayes lifelong RL algorithm, EPIC
(Algorithm 1), to minimize the novel bound in (3). The
algorithm utilizes a Bayesian posterior to distill the
common policy distribution learned from previous tasks,
which is then used to sample the policy and serves as
a prior for new tasks. We provide a generalization
guarantee for EPIC in Theorem 3.3. Furthermore, we
employ the Gaussian family for the posterior and prior
in EPICG (Algorithm 2). The sample complexity of
EPICG is given in Theorem 3.4.

3.1 PAC-Bayes Framework for Lifelong RL
We learn a general policy distribution P for lifelong
RL by leveraging the core concept of the PAC-Bayes
Method. We explicitly formulate U(P ) for the lifelong
RL setting and employ it to propose an algorithm that
learn the P by minimizing U(P ) to accomplish the
lifelong learning objective.

Define P as the whole policy space for P . Rather than
considering a general distribution P for hypotheses
where Π can be infinite, we let P be parameterized by
θ ∈ Rd such that θ ∼ P . Note θ could be a neural
network.

Naturally, the distribution P is the posterior distribu-
tion of policy θ in the PAC-Bayes framework. Then let
P be the prior distribution of the parameter. In the life-
long setting, as the tasks stream in, assume the agent
has encountered K tasks so far, then the PAC-Bayes
lifelong RL problem is formulated as follows:

min
P

U(P )

:=
1

K

K∑
i=1

{
E
θ∼P

[−JMi(πθ)]

}
+ R(DKL(P∥P )),

(3)
where R(DKL(P∥P )) is derived later in our theory,



Statistical Guarantees for Lifelong Reinforcement Learning

where JM(πθ) is the total expected reward of policy
π in MDPM, taking the expectation with respect to
the posterior distribution P for the parameter θ. The
negative sign can be interpreted as the loss on a specific
taskM,

To be concrete, in the finite MDP setting with length
H, for policy πθ with θ ∼ P (θ), the total expected
reward with taskM is the value function,

JM(πθ) = E

[
H−1∑
h=1

γh−1rh|πθ, s1,M
]
,

from a length of H consecutive sample transitions,
s1, a1, r1, s2, a2, r2, . . . , sH ∼ πθ ×M.

3.2 An Algorithm based on PAC-Bayes
Lifelong Framework

We now develop an algorithm to exploit the PAC-Bayes
framework to efficiently perform lifelong RL.

Consider a time where we have seen K tasks so far,
and denote them {Mi}Ki=1. They are drawn from the
lifelong task distribution {Di}Ki=1. It’s worth noting
that these tasks can exhibit distinct distributions and
interdependencies. Each distribution Di should possess
non-zero support and boundedness both from above
and below. Critically, once the agent interacts with
a task, revisiting previously encountered MDPs is not
guaranteed.

Our objective is to learn a shared lifelong learning
model - the distribution of θ using the K tasks the
algorithm has encountered so far.

To achieve this, we propose the following lifelong RL
learning algorithm based on the learning objective in
Equation (3), and provide its theoretical justification.
The main idea is to learn a policy distribution P as a
policy initializer using the objective in Equation (3),
referred to as the default policy This approach allows
the default policy to capture common knowledge among
tasks, addressing the challenge of task divergence.

In the lifelong setting, the agent receives a new task,
stores it, learns from it, then forgets. We allow the
agent to keep a number of N tasks in memory. We
update the default policy every N tasks and estimate
the training cost based on the most recent N tasks. At
the K-th task, the agent has performed

⌊
K
N

⌋
updates

to the default policy so far. At each time step l =
1, · · · ,

⌊
K
N

⌋
, the agent has θl−1 as its policy parameters

from Pl−1. It encounters the ith taskMl,i’s MDP, and
receives JMl,i

(πθl−1
) as the total discounted expected

reward. The collects trajectory data of H steps for
task Ml,i, using πθl−1

, resulting in a dataset τl =
(τl,1, . . . , τl,N ) with a size of |τl| = HN .

Algorithm 1 Empirical PAC-Bayes that Improves
Continuously (EPIC)

1: Input: Update frequency N ; the number of steps
allowed in each task H; prior evolving speed λ

2: Initialize prior policy distribution P 0

3: Initialize default policy distribution P0 ← P 0 ;
4: for i = 1, 2, 3, · · · ,K, · · ·∞ do
5: Receive a new task Mi ∼ Di and store it into

Memory buffer.
6: if i mod N = 0 then
7: Let l = i/N.
8: Sample θl−1 ∼ Pl−1

9: Roll out trajectories τl,k using πθl−1
and

{Mk}ik=i−N+1 and store τl into Memory.
10: # Update default policy Pl by using τl
11: P l−1 ← (1− λ)P l−1 + λPl−1

12: Pl ← argminP U(P )
13: Empty Memory by clearing dataset τl
14: end if
15: end for

The agent uses τl to update the default policy Pl by
minimizing the generalization error bound in (3), eval-
uated at the current time’s posterior Pl−1 and prior
P l−1. Before learning starts, the agent initializes a
prior policy distribution P 0 and the same posterior
policy distribution P0 randomly or based on domain
knowledge (Lines 2-3 of Algorithm 1). Choosing a good
prior policy distribution P 0 is challenging as it affects
the tightness of the bound.

We adopt a Bayesian sequential experiment design
(Chaloner and Verdinelli, 1995) and use an evolving
prior instead of a fixed one. We gradually move the
prior towards the default policy by P l = (1 − λ)Pl +
λ× P l (Line 11), where λ ∈ (0, 1) controls the moving
speed, and λ decays by λ = λ×α (α < 1) over the tasks.
This allows us to find a good prior during learning and
leverage it to improve the default policy.

As the agent encounters an increasing number of tasks,
each task remains distinct. However, with more ex-
posure to tasks, the agent gradually improves its un-
derstanding of the distribution P for πθ. When a new
task emerges, the agent can sample θl ∼ Pl−1, employ-
ing θl to generate a trajectory for subsequent updates.
This allows the agent to learn faster, obtaining higher
rewards in a shorter time frame. Next, we derive our
main PAC-Bayes theorem for Algorithm 1.

Our learning process involves a loop of times to evolve
the policy distribution. So we index the policy dis-
tribution at each time by a subscript. First, denote
θ := {θl}⌊

K
N ⌋−1

l=0 and let P := P ({θl}⌊
K
N ⌋−1

l=0 ) denote the
joint posterior distribution of θ0, . . . , θ⌊K

N ⌋−1 across all
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times. And naturally, let Pl := P (θl|θl−1) be the condi-
tional probability of policy for time l given the policy
from time l − 1, and specially, let P0 := P (θ0).

Assumption 3.1. 1) Given the previous policy θl−1,
the current time policy is independent of the historical
sequence:

θl ⊥⊥ θl−2, . . . , θ0|θl−1.

Intuitively, this conditional independence assump-
tion for policy implies that the current policy θl is
conditionally independent of the past given θl−1.

2) Define the support lower bound of the policy dis-
tribution as:

smin = inf
{
s : s ≥ min

A:Pl(A)>0
Pl(A) for all Pl ∈ Π

}
.

Intuitively, this is the smallest non-zero probability
across all policies θl and measures Pl ∈ Π.
3) Define the norm difference of two distributions as

∥Pl − Pl−1∥∞
:= sup {|Pl(A)− Pl−1(A)| : A ∈ A , Pl, Pl−1 ∈ Π} .

Then, we can define the radius of variation between
consecutive policy distributions as:

r = inf {c : ∥Pl − Pl−1∥∞ ≤ c for all l} ,

where A is the set of measurable events. This radius
r bounds the difference between consecutive policy
measures Pl and Pl−1.

To simplify the analysis and improve readability, we
denote T =

⌊
K
N

⌋
and assume K mod N = 0 without

loss of generality. Based on Assumption 3.1, we arrive
at the following relationship:

P ({θl}T−1
l=0 ) = PT−1 × · · · × Pl × · · · × P0. (4)

We also derive a corollary on the decomposition of the
training error, which facilitates the subsequent proof.
The proof is deferred to Appendix C.1.

Corollary 3.2 (Decomposition of Training Error).
Suppose Assumption 3.1 holds. Then we have:

1

K

K∑
i=1

E{θl}T−1
l=0 ∼P [−JMi

(πθ)]

=

T∑
l=1

N∑
i=1

1

TN
Eθl−1∼Pl−1

[
−JMl,i

(πθl−1
)
]
.

Theorem 3.3 (PAC-Bayes Bound for EPIC). Un-
der the settings of Algorithm 1 and Assumption 3.1,
further assume i-th finite horizon MDP of task i has
a reward that belongs to [0, 1]. When running Algo-
rithm 1, we update the default policy distribution Pl
for every N -th task by using pairs of {(Pl, P l)}T−1

l=0 .
Let T :=

∏T
l=1 (θl−1 ×Ml), and let the expected

loss over joint policy and joint trajectory space be:

1

K

K∑
i=1

E{θl}T−1
l=0 ∼P [E{τl}T

l=1∼T [−JMi
(πθ)]].

and let the training error be:

1

K

T∑
l=1

N∑
i=1

Eθl−1∼Pl−1

[
−JMl,i

(πθl−1
)
]
.

Then with probability at least 1− 2 exp (−Kγ), for
any 0 < γ < 1, we have

expected loss ≤ training error + R(DKL(P∥P )),

with
R(DKL(P∥P ))

:=
2N1/2H λr

1−α

√
1−α2(K/N−1)

smin(1−α2)

K1/2
+

2N1/2H

K(1−γ)/2 .

(5)

The proof is deferred to Appendix §C.

Remarks. (1) The tightness of the bound depends
on the number of lifelong tasks encountered so far
K, the number of tasks memorized N , the trajectory
length H, and the KL divergence between P and P .
By letting γ = 1/4, the difference of training and
generalization error is in the order O(K−3/8). (2) The
N appears on the right hand side can be understood as
the memory size kept in the agent before it refreshes.
The larger N will reduce K/N thus could potentially
decrease the first term by making 1−α2K/N−2 smaller.
However, it also increase the value N1/2. One could
obtain a reasonable choice of N by minimizing the
U(P ) = Training error + R(DKL(P∥P )) with respect
to N , but the training error is unknown.

Practically, a strategy to adaptively adjust N by mini-
mizing the U(P ) using a neural network can work.

Overall, this theory enables our learner to optimize the
right-hand side of Equation (5) and learn the lifelong
policy distribution with a guaranteed minimal true
cost.

There are several unsolved questions before we propose
a practical lifelong RL algorithm. Theorem 3.3 holds
for policy distribution P and prior distribution P pa-
rameterized by θ. However, in practice, determining
suitable distributions for P and P becomes a crucial
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challenge. Additionally, computing the posterior distri-
butions {Pl}T−1

l=0 is non-trivial. Moreover, we need to
identify the appropriate optimization method to learn
parameters for P . To address these questions, the
next two sections will provide solutions and propose a
practical lifelong RL algorithm based on the proposed
Algorithm 1.

3.3 Posterior Distribution and Prior
Distribution

In Equation (5), Pl represents the posterior distribution
of θl. To optimize the posterior Pl, we need to choose
appropriate hyperparameters for its distribution. For
instance, in a Gaussian distribution, we optimize its
mean µ and variance σ2.

Let τl ∼ θl−1 ×M1 · · · × . . .MN be the data induced
from previous θl−1, and define the likelihood func-
tion p(g(τl)|θl−1). Suppose the prior distribution is
a probability density function p(θl−1; q), parametrized
by q, such as a Gaussian prior P l = N (µ

l
, σl), where

q := (µ
l
, σl).

Based on Bayes’ Rule, the posterior distribution is
uniquely given by p(θl−1|g(τl); q) =

p(g(τl)|θl−1)p(θl−1;q)

c(q) ,
where c(q) is the normalization constant depends on
q. We can optimize the hyperparameter q using the
following equation:

min
q

Ul(P ; q) :=

N∑
i=1

Eθl−1∼p(θl−1|g(τl);q)
[
−JMl,i

(πθl−1
)
]

+ R(DKL (P∥P ; q)),
(6)

where R(DKL (P∥P ; q)) is defined in (5). In Equa-
tion (6), the posterior distribution is unknown, and
obtaining an explicit expression requires knowing the
data likelihood. In the RL regime, data samples con-
sist of states, actions, and value functions, and one
approach is to use the exponential of the negative
squared temporal difference (TD) error as an unnor-
malized likelihood, as suggested in Dann et al. (2021),
which is left for future research.

In PAC-Bayes, the prior and posterior distributions
can belong to different families. However, it is often
practical to consider them belonging to a common
distribution family, as it simplifies the computation
of KL divergence. Hence, we assume the default and
prior policy distributions for θ to be d-dimensional
Gaussians with unknown parameters θ ∼ N (µ, σ2).
These parameters are updated by minimizing the upper
bound.

Based on equation (6), we solve the following problem

where ϕ(θ;µ, σ) is the Multivariate Gaussian PDF:

min
µ,σ

U(P ;µ, σ) :=

N∑
i=1

∫
−JMl,i

(πθl−1
)ϕ(θ;µ, σ)dθ

+ R
(
DKL

(
N (µ, σ2)∥N (µ;σ2)

))
.
(7)

Evaluating the integral in equation (7) analytically is
intractable in practice. Therefore, we resort to Monte
Carlo Methods, where we sample θl−1,jj∈[M ] to approx-
imate the gradient descent updates by:

∇µ,σÛ(P, {Mi}i∈[N ], {θl−1,j}j∈[M ];µ, σ)

:=
1

M

M∑
j=1

N∑
i=1

−∇µ,σ
{
JMl,i

(πθl,j )

+ R
(
DKL

(
N (µ, σ2)∥N (µ;σ2)

)) }
,

(8)

where θl−1,j is a sample drawn from Pl−1 to perform
gradient descent during optimization in each iteration.

Moreover, to ensure the parameters µ and σ can be
updated, we use indirect sampling by first sampling
a multivariate standard normal distribution ϵj . The
randomness of the parameter θj is then defined as:

θj = µ+ σ ⊙ ϵj , ϵj ∼ N (0, Id). (9)

According to Equation (9), the parameter θj is multi-
variate normal distributed with θj ∼ N (µ, σ2).

3.4 A Practical EPIC Algorithm
We propose a practical EPIC algorithm, called EPICG,
as presented in Algorithm 2. In this algorithm, a policy
is defined as a Gibbs distribution in a linear combina-
tion of features: πθ(s, a) =

exp(θ⊤ψs,a)∑
b exp(θ⊤ψs,b)

. Here, θ can
be replaced by a neural network.

For the parameterization of θ using a neural network,
we provide the details in Appendix §E.1. In each iter-
ation, the agent samples a set of policies θjj∈[M ] ∼ P
from the "posterior" policy distribution for every N
tasks (Lines 8-9). It then rolls out a set of trajectories
τ = τi×j∈[N ]×[M ] for each task and estimates the cost
(Lines 10-11). More specifically, an action a is sampled
as a ∼ πθl,j (s, a), and a state s is sampled using a
transition kernel determined by taskMi.

The gradient is taken with respect to the objective
function Û (Equation (7)) which with respect to the
cost function and with respect to the KL divergence
function expressed in Equation (5).

EPICG uses gradient descent in the space of P to find
the policy that minimizes the expected loss, i.e., P ∗ ∈
arg infP∈Π

1
K

∑K
i=1 E{θl}T−1

l=0 ∼P [E{τl}T
l=1∼T [−JMi(πθ)]].



Zhang, Zhi et al.

0 500 1,000 1,500 2,000

0

100

200

300

Tasks (environments)

EPICG
LPG-FTW
Single-task
C-Dreamer
VBLRL
T-HiP-MDP
EWC

(a) HalfC.-gravity

0 500 1,000 1,500 2,000
0

50

100

150

200

Tasks (environments)

EPICG
LPG-FTW
Single-task
C-Dreamer
VBLRL
T-HiP-MDP
EWC

(b) HalfC.-bodyp.

0 500 1,000 1,500 2,000

0

100

200

300

Tasks (environments)

EPICG
LPG-FTW
Single-task
C-Dreamer
VBLRL
T-HiP-MDP
EWC

(c) Hopper-gravity

0 500 1,000 1,500 2,000

0

100

200

300

Tasks (environments)

EPICG
LPG-FTW
Single-task
C-Dreamer
VBLRL
T-HiP-MDP
EWC

(d) Hop.-bodyp.

0 500 1,000 1,500 2,000

0

100

200

300

Tasks (environments)

LPG-FTW
EPICG
Single-task
C-Dreamer
VBLRL
T-HiP-MDP
EWC

(e) Walker-gravity

0 200 400 600 800 1,000

0

100

200

300

400

Tasks (environments)

EPICG
LPG-FTW
Single-task
C-Dreamer
VBLRL
T-HiP-MDP
EWC

(f) Walker-bodyp.

Figure 1: Comparison between EPICG and baselines on lifelong RL benchmarks. X-axis: tasks, Y -axis: reward.
CartPole-Goal with xgoal ∼ N (0, 0.1) and xgoal ∼ N (0, 0.5), LunarLander, CartPole-Mass with µc = 0.5 and
µc = 1.0, and Swimmer.

Algorithm 2 Empirical PAC-Bayes that Improves
Continuously Under Gaussian Prior) (EPICG)

Input: policy dimension d; learning rate β; update
frequency N ; failure probability δ; the number of
steps allowed in each task H; prior evolving speed
λ

2: Initialize prior policy mean and derivation µ
0
, σ0 ∈

Rd
Initialize default policy mean and derivation µ0 ←
µ
0
, σ0 ← σ0 ;

4: for i = 1, 2, 3, · · · ,K, · · ·∞ do
Receive a new task Mi ∼ Di and store it in
memory.

6: if i mod N = 0 then
Let l = i/N.

8: Sample {θl−1,j}j∈[M ] ∼ N (µl−1, σ
2
l−1) by sam-

ple ϵj ∼ N (0, Id)
Set initial policy, i.e., initialize parameters for
neural network θl−1,j ← {µl−1 + ϵj ⊙ σl−1}

10: Roll out trajectories τk,j using
{
πθl−1,j

}
j∈[M ]

and {Mk}ik=i−N+1 and store into τl,j
# Update default and Prior parameters by
using τl,j

12: µl ← µl−1−β∇µÛ(P, {Mk}, {θl−1,j}j∈[M ];µ, σ)

σl ← σl−1 − β∇σÛ(P, {Mk}, {θl−1,j}j∈[M ];µ, σ)
14: µ

l
← (1− λ)µ

l
+ λµl; σ ← (1− λ)σl + λσl

Empty Memory by clearing dataset τl
16: end if

end for

We denote the optimal expected return as J∗ :=
1
K

∑K
i=1 E{θl}T−1

l=0 ∼P∗ [E{τl}T
l=1∼T [JMi

(πθ)]]. We pro-
vide the sample complexity of EPICG.

Theorem 3.4 (Sample Complexity). Consider the
setting of Theorem 3.3. Given a small ϵ > 0, if the

number of tasks K satisfies

K =max

(
16NH2λ2r2

smin(1− α)3(1 + α)ϵ2
,

(
16NH2

ϵ2

) 1
1−γ

)
+ Õ(Nϵ−4),

then with high probability,

Training loss− (−J∗) ≤ O(ϵ),

where Õ(·) suppresses logarithmic dependence.

Proof. The central part of the proof is Theorem 3.3
(detailed proof in Appendix C.2), and the remaining
parts are provided in Appendix C.5.

Algorithm 2 learns a general policy distribution. How-
ever, if we are interested in a policy for any specific task,
we can sample a policy from P and use an appropri-
ate single-task learning method to fine-tune the policy.
Hence, every task gets a "customized" policy. We also
provide an Algorithm 3 to reflect this in Section 4.3.

4 Experiments
4.1 Experimental Setup
We experiment with common tasks in lifelong-RL
benchmarks used in prior works (Mendez et al.,
2020; Fu et al., 2022), including HalfCheetah-gravity,
HalfCheetah-bodyparts, Hopper-gravity, Hopper-
bodyparts, Walker-gravity, Walker-bodyparts. To in-
crease the diversity of lifelong environments, we also
create several more lifelong environments, Cartpole-
GMM, LunarLander-Uniform, Ant-Direction-Uniform,
Ant-Forward-Backward-Bernoulli, Swimmer-Uniform,
Humanoid-Direction-Uniform. Details about the above
environments can be found in Appendix §F.1 and in
Table 1. In each lifelong environment, the agents are
tested across 2,000 or 1,000 tasks. Each environment
has a distinct maximum H. As the sequence of 2,000
or 1,000 tasks unfolds, we update the default policy
every N tasks. The effectiveness of our approach is
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Figure 2: Average reward obtained by EPICG-SAC and EPICG in different environments with different lifelong
learning settings. X-axis: tasks, Y -axis: reward.

assessed by how how fast it learns to maximize return
as new tasks emerge.

4.2 Effective Lifelong Learning
Figure 1 evaluates EPICG across several control tasks,
all of which are lifelong-RL benchmarks used in prior
works (Mendez et al., 2020; Fu et al., 2022). This re-
veals EPICG’s noticeable advantage in most scenarios.
EPICG consistently outperforms others. We compared
EPICG against: 1. Continual Dreamer (Kessler et al.,
2023), state-of-the-art lifelong RL method, 2. VBLRL
(Fu et al., 2022), Model based Bayesian lifelong RL
method; 3. LPG-FTW (Mendez et al., 2020), a lifelong
RL method which assumes a factored representations
of the policy parameter space; 3. EWC (Kirkpatrick
et al., 2017a), which is a single-model lifelong RL al-
gorithm that achieves comparable performance with
LPG-FTW as shown in the latter paper; 4. T-HiP-
MDP (Killian et al., 2017), which is a model-based
lifelong RL baseline; and 5. Single-Task RL. Further
details on each baseline can be found in Appendix §B.

4.3 Further Improvement
EPICG effectively learns a shared distribution P of
policy parameters for different tasks. Upon receiving
new tasks, we learn the policy distribution by using
the sampled policy parameter θ. At this point, this
approach has already shown effectiveness in our lifelong
learning setting. Additionally, we can further improve
this θ by optimizing it using data from the new task,
customizing it for that particular task. Below we intro-
duce Algorithm 3 (EPICG-SAC), which integrates the
EPICG framework with the single task algorithm Soft
Actor Critic.

We then compare EPICG-SAC and EPICG for different
environments. Figure 2 shows EPICG-SAC achieves
faster learning than EPICG.

4.4 Ablation on KL divergence regularization
We first verify the empirical performance when we add
the regularizer in (8) compared to having no regular-
izer by a comparison study. The results are shown in
Figure 3, where we observe that adding the regularizer

Algorithm 3 EPICG-SAC
1: Input: Same setting as Algorithm 2
2: for i = 1, 2, 3, · · · ,K, · · ·∞ do
3: Receive a new task Mi.
4: if i mod N = 0 then
5: Do EPICG Policy Distribution Learning.
6: end if
7: SAC single-task train-eval loop.
8: end for

facilitates fast adaptation, leads to learning a higher
reward, and also reduces the variance, which leads to a
more stable learning compared to having no regularize.
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Figure 3: Comparison of adding R(DKL(P∥P̄ )) vs.
not. X-axis: tasks, Y -axis: reward.

4.5 Experiments on Memory Size N
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Figure 4: Comparison of different update frequency N
on (a) CartPole-Uniform; (b) LunarLander-Uniform;
(c) Swimmer-Uniform. X-axis: tasks, Y -axis: reward

As we discussed in Theorem 3.3, there is a performance
trade-off on the number of tasks N retained in memory.
Experimental results have verified this theoretical find-
ing. We can see that in Figure 4 the practical effect of
N on the performance of learning is double-sided.
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5 Conclusion and Future Works
In this work, we address the challenging problem of
lifelong RL and propose a novel algorithm, EPIC(G),
for distribution learning and policy sampling. Our ap-
proach leverages the concept of a world policy, a shared
policy distribution across tasks. This world policy is
updated continuously, enabling our algorithm to han-
dle both non-stationarity and catastrophic forgetting,
achieving best-in-class performance across a suite of
complex lifelong RL benchmarks.

Future directions include exploring more accurate ways
to obtain the posterior distribution of the policy param-
eters, as discussed in Section 3.3. Additionally, since
the optimization objective in Equation (8) is noncon-
vex, better performance guarantees could be achieved
by investigating multiple optimizations across tasks.
Furthermore, constructing deep predictive models for
each task to further improve EPIC(G)’s performance.

References

Abel, D., Barreto, A., Van Roy, B., Precup, D., van
Hasselt, H. P., and Singh, S. (2024). A definition
of continual reinforcement learning. Advances in
Neural Information Processing Systems, 36.

Abel, D., Jinnai, Y., Guo, S. Y., Konidaris, G., and
Littman, M. (2018). Policy and value transfer in
lifelong reinforcement learning. In International
Conference on Machine Learning, pages 20–29.
PMLR.

Amit, R. and Meir, R. (2018). Meta-learning by ad-
justing priors based on extended pac-bayes theory.
In International Conference on Machine Learning,
pages 205–214. PMLR.

Anand, N. and Precup, D. (2023). Prediction and
control in continual reinforcement learning. In
Advances in Neural Information Processing Systems
(NeurIPS).

Arnold, S. M., Mahajan, P., Datta, D., Bunner, I., and
Zarkias, K. S. (2020). learn2learn: A library for meta-
learning research. arXiv preprint arXiv:2008.12284.

Boutilier, C., Cohen, A., Daniely, A., Hassidim, A.,
Mansour, Y., Meshi, O., Mladenov, M., and Schuur-
mans, D. (2018). Planning and learning with stochas-
tic action sets. arXiv preprint arXiv:1805.02363.

Chaloner, K. and Verdinelli, I. (1995). Bayesian exper-
imental design: A review. Statistical science, pages
273–304.

Chandak, Y., Theocharous, G., Nota, C., and Thomas,
P. (2020). Lifelong learning with a changing ac-
tion set. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 3373–3380.

Dann, C., Mohri, M., Zhang, T., and Zimmert, J.
(2021). A provably efficient model-free posterior
sampling method for episodic reinforcement learning.
Advances in Neural Information Processing Systems,
34:12040–12051.

Donsker, M. D. and Varadhan, S. S. (1983). Asymptotic
evaluation of certain markov process expectations for
large time. iv. Communications on pure and applied
mathematics, 36(2):183–212.

Dziugaite, G. K., Hsu, K., Gharbieh, W., Arpino, G.,
and Roy, D. M. (2020). On the role of data in PAC-
Bayes bounds. arXiv:2006.10929 [cs, stat].

Fard, M. and Pineau, J. (2010). PAC-Bayesian Model
Selection for Reinforcement Learning. Advances
in Neural Information Processing Systems, 23:1624–
1632.

Fard, M. M., Pineau, J., and Szepesvari, C. (2012).
PAC-Bayesian Policy Evaluation for Reinforcement
Learning. arXiv:1202.3717 [cs, stat].

Flynn, H., Reeb, D., Kandemir, M., and Peters, J.
(2022). Pac-bayesian lifelong learning for multi-armed
bandits. Data Mining and Knowledge Discovery,
36(2):841–876.

Freedman, D. A. (1975). On tail probabilities for mar-
tingales. the Annals of Probability, pages 100–118.

Fu, H., Yu, S., Littman, M., and Konidaris, G.
(2022). Model-based lifelong reinforcement learn-
ing with bayesian exploration. Advances in Neural
Information Processing Systems, 35:32369–32382.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G.
(2022). What can transformers learn in-context? a
case study of simple function classes. Advances in
Neural Information Processing Systems, 35:30583–
30598.

Germain, P., Lacasse, A., Laviolette, F., and
Marchand, M. (2009). PAC-Bayesian learn-
ing of linear classifiers. In Proceedings of
the 26th Annual International Conference on
Machine Learning, ICML ’09, pages 353–360,
New York, NY, USA. Association for Computing
Machinery.

Ha, D. and Schmidhuber, J. (2018). World models.
arXiv preprint arXiv:1803.10122.

Kessler, S., Ostaszewski, M., Bortkiewicz, M., Żarski,
M., Wolczyk, M., Parker-Holder, J., Roberts, S. J.,
Mi, P., et al. (2023). The effectiveness of world
models for continual reinforcement learning. In
Conference on Lifelong Learning Agents, pages 184–
204. PMLR.



Statistical Guarantees for Lifelong Reinforcement Learning

Khetarpal, K., Riemer, M., Rish, I., and Precup, D.
(2022). Towards continual reinforcement learning:
A review and perspectives. Journal of Artificial
Intelligence Research, 75:1401–1476.

Killian, T. W., Daulton, S., Konidaris, G., and Doshi-
Velez, F. (2017). Robust and efficient transfer learn-
ing with hidden parameter markov decision processes.
Advances in neural information processing systems,
30.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Ve-
ness, J., Desjardins, G., Rusu, A. A., Milan, K.,
Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.
(2017a). Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy
of sciences, 114(13):3521–3526.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness,
J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,
Clopath, C., Kumaran, D., and Hadsell, R. (2017b).
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the National Academy of
Sciences, 114(13):3521–3526.

Krähenbühl, P., Doersch, C., Donahue, J., and Dar-
rell, T. (2016). Data-dependent Initializations of
Convolutional Neural Networks. arXiv:1511.06856
[cs].

Langford, J. and Shawe-Taylor, J. (2002).
PAC-Bayes &amp; margins. In Proceedings
of the 15th International Conference on
Neural Information Processing Systems, NIPS’02,
pages 439–446, Cambridge, MA, USA. MIT Press.

Lecarpentier, E., Abel, D., Asadi, K., Jinnai, Y.,
Rachelson, E., and Littman, M. L. (2021). Lips-
chitz lifelong reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 8270–8278.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2015).
Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971.

Majumdar, A., Farid, A., and Sonar, A. (2021). Pac-
bayes control: learning policies that provably general-
ize to novel environments. The International Journal
of Robotics Research, 40(2-3):574–593.

McAllester, D. A. (1999). Some PAC-Bayesian Theo-
rems. Machine Learning, 37(3):355–363.

Mendez, J., Wang, B., and Eaton, E. (2020). Life-
long policy gradient learning of factored policies
for faster training without forgetting. Advances in

Neural Information Processing Systems, 33:14398–
14409.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533.

Naik, D. K. and Mammone, R. J. (1992). Meta-neural
networks that learn by learning. In [Proceedings
1992] IJCNN International Joint Conference on
Neural Networks, volume 1, pages 437–442 vol.1.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and
Srebro, N. (2017). Exploring Generalization in Deep
Learning. arXiv:1706.08947 [cs].

Neyshabur, B., Bhojanapalli, S., and Srebro, N.
(2018). A PAC-Bayesian Approach to Spectrally-
Normalized Margin Bounds for Neural Networks.
arXiv:1707.09564 [cs].

Salimans, T. and Kingma, D. P. (2016). Weight Normal-
ization: A Simple Reparameterization to Accelerate
Training of Deep Neural Networks. arXiv:1602.07868
[cs].

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2014).
Exact solutions to the nonlinear dynamics of learn-
ing in deep linear neural networks. arXiv:1312.6120
[cond-mat, q-bio, stat].

Schulman, J., Levine, S., Abbeel, P., Jordan, M.,
and Moritz, P. (2015). Trust region policy opti-
mization. In International conference on machine
learning, pages 1889–1897. PMLR.

Seeger, M. (2002). PAC-Bayesian Generalisation Error
Bounds for Gaussian Process Classification. Journal
of Machine Learning Research, 3(Oct):233–269.

Silver, D., Huang, A., Maddison, C. J., Guez, A.,
Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M.,
et al. (2016). Mastering the game of go with deep neu-
ral networks and tree search. Nature, 529(7587):484–
489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,
D., Graepel, T., et al. (2017). Mastering chess and
shogi by self-play with a general reinforcement learn-
ing algorithm. arXiv preprint arXiv:1712.01815.

Steinparz, C. A., Schmied, T., Paischer, F., Dinu, M.-
C., Patil, V. P., Bitto-Nemling, A., Eghbal-zadeh, H.,
and Hochreiter, S. (2022). Reactive exploration to
cope with non-stationarity in lifelong reinforcement
learning. In Conference on Lifelong Learning Agents,
pages 441–469. PMLR.



Zhang, Zhi et al.

Thrun, S. and Pratt, L. (1998). Learning to Learn:
Introduction and Overview. In Thrun, S. and Pratt,
L., editors, Learning to Learn, pages 3–17. Springer
US, Boston, MA.

Veer, S. and Majumdar, A. (2020). Probably Approxi-
mately Correct Vision-Based Planning using Motion
Primitives. arXiv:2002.12852 [cs, eess, math].

Wainwright, M. J. (2019). High-dimensional statistics:
A non-asymptotic viewpoint, volume 48. Cambridge
university press.

Yuan, R., Gower, R. M., and Lazaric, A. (2022). A
general sample complexity analysis of vanilla policy
gradient. In International Conference on Artificial
Intelligence and Statistics, pages 3332–3380. PMLR.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A.,
Fei-Fei, L., and Farhadi, A. (2017). Target-driven
visual navigation in indoor scenes using deep re-
inforcement learning. In 2017 IEEE international
conference on robotics and automation (ICRA),
pages 3357–3364. IEEE.



Statistical Guarantees for Lifelong Reinforcement Learning

Supplementary Material

A Broader Impact and Ethical Statement
This paper contributes to the ongoing development of Machine Learning, adhering to standard ethical guidelines
in research. Our work, aligning with common advancements in the field, does not present any unique ethical
dilemmas or societal consequences that require special emphasis. We recognize the importance of responsible
use and development of Machine Learning technologies and their potential impact on society. However, our
research does not delve into areas that might raise significant ethical or societal concerns. We commit to ethical
research practices and consider the broader implications of our work to be aligned with the typical advancements
in Machine Learning.

B Related Works
Lifelong Reinforcement Learning: Lifelong learning has been a crucial area of research in machine learning,
where the goal is to develop agents that can continuously adapt to new tasks while retaining knowledge from
previous experiences. Early foundational works, such as Naik and Mammone (1992) and Thrun and Pratt (1998),
explored the basic principles of lifelong learning, setting the stage for more advanced methods. Subsequent
research has focused on mitigating catastrophic forgetting and enhancing data efficiency, which are critical
challenges in lifelong learning scenarios. Various approaches have been proposed to improve adaptation in lifelong
learning. Saxe et al. (2014); Kirkpatrick et al. (2017b); Krähenbühl et al. (2016); Salimans and Kingma (2016)
explored strategies for better initialization in deep networks.

Lifelong RL, as an extension of lifelong learning, naturally aligns with the agent-environment interaction framework,
making it ideal for continual learning Khetarpal et al. (2022). Key contributions to this field include Lipschitz
Lifelong RL Lecarpentier et al. (2021) and Abel et al. (2018), which emphasize value transfer and initialization to
boost learning efficiency. Chandak et al. (2020) tackles the challenge of evolving action sets, Anand and Precup
(2023) introduces a dual-component value function approach for balancing long-term stability and short-term
adaptability, and Fu et al. (2022) develops a model-based Bayesian framework that enhances both forward and
backward transfer by extracting common structures across tasks. Lifelong RL has been further formalized as a
framework where agents continuously learn and adapt, moving beyond static solutions Abel et al. (2024).

Recent baseline algorithms for lifelong RL have made significant advancements. Continual Dreamer Kessler
et al. (2023) employs ensemble networks and is task-agnostic, leveraging a world model that can generate tasks
for improving learning efficiency. VBLRL Fu et al. (2022) is a model-based method that learns a Bayesian
posterior distribution shared across tasks to increase sample efficiency in related tasks. LPG-FTW Mendez
et al. (2020) is a policy-gradient-based lifelong method that uses data from previously seen tasks to train policy
networks, accelerating the learning of new tasks. EWC Kirkpatrick et al. (2017a) is a single-model lifelong RL
algorithm that avoids forgetting by imposing a quadratic penalty, pulling weights back towards values important
for previously learned tasks. T-HiP-MDP Killian et al. (2017) is a model-based method that models related tasks
using low-dimensional latent embeddings and a Bayesian Neural Network, which captures both shared dynamics
across tasks and individual task variations.

Our approach introduces a lifelong RL framework integrating PAC-Bayes theory to learn a policy distribution in
non-stationary environments, ensuring effective knowledge retention and adaptability across tasks throughout the
agent’s lifetime.

PAC-Bayes Theory: PAC-Bayes theory McAllester (1999) has been extensively used in supervised and deep
learning to study generalization bounds Langford and Shawe-Taylor (2002); Seeger (2002); Germain et al. (2009);
Dziugaite et al. (2020); Neyshabur et al. (2018, 2017). In recent years, PAC-Bayes theory has been applied to
reinforcement learning (RL) Schulman et al. (2015); Fard and Pineau (2010); Fard et al. (2012); Majumdar et al.
(2021); Veer and Majumdar (2020), primarily focused on single-task or offline settings, providing a framework for
deriving generalization bounds in dynamic and uncertain environments. Our method offers a novel integration of
PAC-Bayes theory into lifelong RL, providing a framework that supports continuous learning and adaptation
across varying tasks.
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C Detailed Proofs
C.1 Proof of Corollary 3.2
Corollary (Decomposition of Training Error). Assume Assumption 3.1 holds, then it holds true that

1

K

K∑
i=1

E{θl}T−1
l=0 ∼P [−JMi

(πθ)] =
1

T

T∑
l=1

1

N

N∑
i=1

Eθl−1∼Pl−1

[
−JMl,i

(πθl−1
)
]
.

Proof. By Assumption 3.1,
P (θT−1, . . . , θ0)

=P (θT−1|θT−2, . . . , θ0)× · · · × P (θ1|θ0)P (θ0)

=P (θT−1|θT−2)× · · · × P (θ1|θ0)P (θ0)

:=PT−1 × · · · × Pl × · · · × P0

(10)

By tower property, we have

E{θl}T−1
l=0 ∼P [−JMi(πθ)] = E{θl∼Pl}T−1

l=0
[−JMi(πθ)]

=
1

N

N∑
i=1

EPT−2,...,P0
EθT−1∼PT−1|PT−2,...,P0

[−JMT,i
(πθT−1

)]+

· · ·+ 1

N

N∑
i=1

Eθ0∼P0
[−JMT,i

(πθ0)]

=
1

N

N∑
i=1

EPT−2
EθT−1∼PT−1|PT−2

[−JMT,i
(πθT−1

)]+

· · ·+ 1

N

N∑
i=1

Eθ0∼P0
[−JMT,i

(πθ0)]

=
1

N

N∑
i=1

EθT−1∼PT−1
[−JMT,i

(πθT−1
)]+

· · ·+ 1

N

N∑
i=1

Eθ0∼P0
[−JMT,i

(πθ0)]

=
1

T

T∑
l=1

1

N

N∑
i=1

Eθl−1∼Pl−1

[
−JMl,i

(πθl−1
)
]
.

C.2 Azuma-Hoeffiding or Freedmans inequality for martingale difference sequences for RL
We let the Algorithm (1) experience K tasks, for every N task Algorithm (1) performs lifelong learning, i.e.,
learns the posterior distribution hyperparameters for policy.

Remember, in Algorithm (1), where the the lifelong setting happens with K tasks streaming in, we update the
default policy every N tasks and estimate the training cost based on the most recent N tasks. The entire learning
process consists of a total of T episodes of updates.

Let the distribution of policy has a parameter mean µ and variance-covariance σ2 for illustration purposes. For
each l ∈ [T ] episode, Algorithm (1) proceeds as:

1. Sample θl−1 ∼ Pl−1(θ;µl−1, σ
2
l−1) learnt from the previous episode.

2. Using θl−1 and N tasks {Mi,l}i∈[N ] from current episode to collect data τl;

3. Using an optimization algorithm and data from Step 1 to learn the posterior distribution Pl(θ;µl, σ
2
l )’s hyper

parameters;
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For l’s episode, for policy πθl , which is learned using data roll-out by θl−1 ∼ Pl−1(θ;µl−1, σ
2
l−1), its value function

with task Ml,i is defined as the total discounted expected rewards,

V
πθl

Ml,i
(sl,1) := JMl,i

(πθl) = E

[
H−1∑
h=1

γh−1rl,h|πθl , sl,1,Ml,i

]
, (11)

from a length of H consecutive sample transitions, sl,1, al,1, rl,1, sl,2, al,2, rl,2, . . . , sl,H ∼ πθl ×Ml,i. Note, θl is a
function of τl, µl−1, σ

2
l−1, which is random, and the randomness is dependent on τl, µl−1, σ

2
l−1.

The posterior distribution P (θ;µ, σ2) defines a randomized θ. Algorithm (1) draws a θ according to θ ∼ P (θ;µ, σ2)
at each round of the whole process and applies it to learn the hyperparameter of P (θ;µ, σ2) on the next round.
For notation-wise, if we do not use subscript l, it means the statement holding for general.

For any θ, let ST be the difference between the expected and empirical objective value function after the T -th
round,

ST :=

T∑
l=1

Dl, l ∈ [T ], (12)

where Dl :=
∑N
i=1 Eτl∼θl−1×Ml

[
V
πθl

Ml,i
(sl,1)|Fl−1

]
− ∑N

i=1 V
πθl

Ml,i
(sl,1). And the filtration Fl−1 =

σ({θk}k≤l−2 , {Mi,k−1}i∈[N ],k≤l−1) is the σ-algebra generated by the random variables {θk}k≤l−2 and
{Mi,k−1}i∈[N ],k≤l−1.

We first show that using Algorithm (1), after T -th lifelong learning updates, with probability at least 1− δ, for a
small δ ∈ (0, 1), ST = O(

√
T ).

Theorem C.1. Let {Dl}l≤T , and ST be defined in Equation 12. For fixed N and H, then with probability at
least 1− δ,

|ST | ≲
√

1

2

(
ln

2

δ

)
TN2H2, (13)

Furthermore, if |Dl| ≤ b for all l ≤ T , and let

S̃T =

T∑
l=1

E
[
D2
l |Fl−1

]
, (14)

then with probability at least 1− δ, for λ ∈ [0, 1
b ],

|ST | ≲
1

λ
ln

2

δ
+ λS̃T ≤

1

λ
ln

2

δ
+ λTN2H2, (15)

Proof. Firstly, the θl comes from the posterior distribution P (θ;µ, σ2), which depends on {θk}k≤l−1 and
{Mi,l}i∈[N ]. Furthermore, for a fixed θl, we see that Dl is Fl−1 measurable. So given that Dl =∑N
i=1 E

[
V
πθl

Mi,l
(sl,1)|Fl−1

]
−∑N

i=1 V
πθl

Mi,l
(sl,1), we have E [Dl|Fl−1] = 0. And {Dl}l∈[T ] is a martingale difference

sequence of functions of θ. Furthermore,
∑N
i=1 V

πθl

Mi,l
(sT,1) ≤ NH because of Equation (11) and the reward rl,h is

in [0, 1] in Theorem 3.3. And {Dl}l∈[T ] is a bounded martingale difference sequence. In other words, Dl ∈ [al, bl],
with al = −NH, bl = NH, and b = NH, this is true because in Equation (11), the reward rl,h is in [0, 1] in
Theorem 3.3. Then based on the conclusion of Theorem D.3, the Azuma-Hoeffding Inequality for bounded
martingale difference sequence, we get the result in Equation (13).

For Equation (15), we use Theorem D.4, the Freedmans Inequality for martingale difference sequence. For any
λ ∈ [0, 1

b ], where |Dl| ≤ b, we have

P {ST ≥ t|FT−1} = P
{
eλST ≥ eλt|FT−1

}
≤ e−λt E

[
eλST |FT−1

]
≤ e−λteλ

2S̃T = e−λt+λ
2S̃T .

(16)
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Thus,
P {ST ≥ t} ≤ EFT−1

[
e−λt+λ

2S̃T

]
. (17)

Repeating this argument for −ST , we get the same bound, so overall,

P {|ST | ≥ t} ≤ 2EFT−1

[
e−λt+λ

2S̃T

]
. (18)

Let EFT−1

[
2e−λt+λ

2S̃T

]
= δ, we get t = 1

λ ln 2
δ + λS̃T . Therefore, with probability at least 1− δ, for λ ∈ [0, 1

b ],

|ST | ≲
1

λ
ln

2

δ
+ λS̃T

(a)
≤ 1

λ
ln

2

δ
+ λTN2H2, (19)

where (a) holds since Dl ∈ [al, bl] almost surely, the conditioned variable Dl|Fl−1 also belongs to this interval
almost surely, then we have S̃T ≤

∑T
l=1

(al−bl)2
4 ≤ TN2H2 by Lemma D.1

Remark of Theorem C.1. Note, if we minimize the right hand side of Equation (15) with respect to λ, we get the

optimal λ =

√
ln 2

δ

TN2H2 , and |ST | ≲ 2
√
ln 2

δTN
2H2. Hence, Equation (15) (derived from Freedmans’s Inequality)

matches Equation (13) (derived from Azuma-Hoeffding Inequality) up to minor constants and logarithmic factors
in the general case, and can be much tighter when the variance S̃T =

∑T
l=1 E

[
D2
l |Fl−1

]
is small.

C.3 PAC-Bayes Bound
The quantity ST is of our interest as it is the difference between the expected and empirical objective value after
the T -th round. In the previous Theorem C.1, we show that ST is bounded for the sampled θ. Our Algorithm 1
keep updating P and sampling θ, rendering {Pl} and {θl}, l = 0, . . . , T −1. To abuse the notation, without further
reminder, in the following proof, we use P ({θl}) and P ({θl}) to denote the joint posterior and prior, and use θ
to denote the set for all θl, similarly for the hyperparameter in the distribution. However, since Algorithm (1)
draws θ from posterior distribution P (θ;µ, σ2), we are interested in the expected value of ST , which is EP [ST ].
At the same time, we will relate all possible P (θ;µ, σ2) to its corresponding “reference” distribution P , the prior
distribution of θ, which is selected before we do step 3. Let q = (µ, σ). In the next Lemma, we will control
EP [ST ] for any q.

Corollary C.2 (Uniform control of all distributions). Let θ ∼ P (θ; q) come from a parametrized distribution
with the same family as P , where P is a given prior distribution. Let {Dl}l≤T and ST follow the same definition
in Theorem C.1. For any λ > 0, let g(θ) := λST (θ)− λ2S̃T , where S̃T is defined either

S̃T =

T∑
l=1

(al − bl)
2

8
, (Match Equation (13)) (20)

or

S̃T =

T∑
l=1

E
[
D2
l |Fl−1

]
, (Match Equation (15)) (21)

then with probability at least 1− δ, and for all P (θ; q),

|EP [ST (θ)]| ≤
DKL(P∥P ) + ln 2

δ

λ
+ λEP

[
S̃T

]
, (22)

with λ > 0 for (20), and λ ∈ [0, 1
b ] required for (21), where |Dl| ≤ b and |al| ≤ b, |bl| ≤ b.
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Proof. Based on Theorem D.5, the Donsker−Varadhans Representation formula, we have

EP
[
|λST | − λ2S̃T

]
≤ DKL(P∥P ) + ln

(
EP

[
e|λST |−λ2S̃T

])
(a)
≲DKL(P∥P ) + ln

(
1

δ
E{Dl}l≤T

[
EP

[
e|λST |−λ2S̃T

]])
(with probability at least 1− δ)

≤DKL(P∥P ) + ln

(
1

δ
E{Dl}l≤T

[
EP

[
eλmax{ST ,−ST }−λ2S̃T

]])
≤DKL(P∥P ) + ln

(
1

δ
E{Dl}l≤T

[
EP

[
eλST−λ2S̃T + eλ(−ST )−λ2S̃T

]])
≤DKL(P∥P ) + ln

(
1

δ

(
EP

[
E{Dl}l≤T

[
eλST−λ2S̃T

]
+ E{Dl}l≤T

[
eλ(−ST )−λ2S̃T

]]))
(b)
≤DKL(P∥P ) + ln

2

δ
.

(23)

Where (a) is due to the Lemma D.2, the Markov’s Inequality. For the S̃k defined in Equation (20), (b) holds
because of Equation (42) in Theorem D.3. For the S̃k defined in Equation (21), it is based on Theorem D.4.

Moving λEP
[
S̃T

]
to the other side of Equation (23), and divided by λ from both sides,

|EP [ST (θ)]| ≤
DKL(P∥P ) + ln 2

δ

λ
+ λEP

[
S̃T

]
(24)

Corollary C.3 (Proof of Theorem 3.3). If we let S̃T follow the definition in 20, for any λ > 0,

|EP [ST (θ)]| ≤
√
2NH

√
T

(
DKL(P∥P ) + ln

2

δ
+

ln 2

2 ln c

(
DKL (P∥P )

ln( 2δ )
+ 1

))
, (25)

and if we let S̃T follow the definition in 21, for any λ ∈ [0, 1
b ], where |Dl| ≤ b,

|EP [ST (θ)]| ≤ min

{
2NH

√
T

(
DKL(P∥P ) + ln

O(lnT )
δ

)
, 2NH

(
DKL(P∥P ) + ln

O(lnT )
δ

)}
, (26)

Proof. The next step would be to optimize the λ in Equation (22), to get the tightest upper bound. However,
the value of λ that minimizes Equation (22) depends on P , whereas we would like to have a result that holds for
all possible distributions simultaneously, which is not possible. So we do a discretization of λ. We make a grid of
λ’s value in a form of a geometric sequence and for each value of DKL(P∥P ), we pick a value of λ from the grid,
which is the closest to the one that minimizes the right-hand side of Equation (22) upon to some minor errors.

First, in Equation (22), we get

λ∗ = argmin
λ

DKL(P∥P ) + ln 2
δ

λ
+ λEP

[
S̃T

]
=

√√√√DKL(P∥P ) + ln 2
δ

EP
[
S̃T

] . (27)

Then putting λ∗ back to Equation (22), we get

|EP [ST (θ)]| ≤ 2

√
(DKL(P∥P ) + ln

2

δ
)EP

[
S̃T

]
(28)
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Moreover, DKL(P∥P ) ≥ 0; note that, if the DKL(P∥P ) = 0, we get

λ∗∗ = argmin
λ

ln 2
δ

λ
+ λEP

[
S̃T

]
=

√√√√ ln 2
δ

EP
[
S̃T

] , (29)

putting λ∗∗ back to Equation (22) with DKL(P∥P ) = 0, we get

|EP [ST (θ)]| ≤ 2

√
ln

2

δ
EP
[
S̃T

]
. (30)

Here λ∗∗ is also a lower bound for the λ.

Now if we let S̃T follow the definition in (21), we have EP
[
S̃T

]
≤ Tb2 by the definition of S̃T in Equation (20)

and (21), and |Dl| ≤ b. Thus, we have λ ∈
[
1
b

√
ln 2

δ

T ,min

{√
DKL(P∥P )+ln 2

δ

EP [S̃T ]
, 1
b

}]
, note for such S̃T , we required

λ ≤ 1
b .

However, in the setting DKL(P∥P ) > 0, the value of λ that minimizing right hand side of Equation (22) is given
by Equation (27), which depends on P , as early mentioned, thus we use the geometric sequence {λj}J−1

j=0 over the

range
[
1
b

√
ln 2

δ

T , 1
b

]
, for λj = cj 1b

√
ln 2

δ

T , for some c > 1 and j = 0, . . . , J − 1. Now we have the geometric series

satisfy cJ−1 1
b

√
ln 2

δ

T ≤ 1
b so as long as J − 1 =

⌈
1

ln c ln
√

T
ln 2

δ

⌉
.

If min

{√
DKL(P∥P )+ln 2

δ

EP [S̃T ]
, 1
b

}
=

√
DKL(P∥P )+ln 2

δ

EP [S̃T ]
, so there are at most total J =

⌈
1

ln c ln
√

T
ln 2

δ

⌉
+ 1 λ’s.

We go back to the proof of Corollary C.2, let δ =
∑J
j=0 δj , with δj =

1
J δ, j ∈ N≥0.

Then for any δj =
1
J δ, we have

P

EP
[
|λST | − λ2S̃T

]
≥ DKL(P∥P ) + ln

2

δj

∣∣∣∣∣λ ∈
1
b

√
ln 2

δ

T
,
1

b


(a)
≤P

(
DKL(P∥P ) + ln

(
EP

[
e|λST |−λ2S̃T

])
≥ DKL(P∥P ) + ln

(
1

δj
E{Dl}l≤T

[
EP

[
e|λST |−λ2S̃T

]]) ∣∣∣∣∣λ ∈
1
b

√
ln 2

δ

T
,
1

b

 ,

(31)

where (a) holds because EP
[
|λST | − λ2S̃T

]
≤ DKL(P∥P ) + ln

(
EP

[
e|λST |−λ2S̃T

])
almost surely, and

DKL(P∥P ) + ln 2
δj
≥ DKL(P∥P ) + ln

(
1
δj
E{Dl}l≤T

[
EP

[
e|λST |−λ2S̃T

]])
almost surely. Here

∣∣∣∣∣ indicates given not

conditional on. Following this, we have
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P

EP
[
|λST | − λ2S̃T

]
≥ DKL(P∥P ) + ln

2

δj

∣∣∣∣∣λ ∈
1
b

√
ln 2

δ

T
,
1

b


≤P

(
DKL(P∥P ) + ln

(
EP

[
e|λST |−λ2S̃T

])

≥ DKL(P∥P ) + ln

(
1

δj
E{Dl}l≤T

[
EP

[
e|λST |−λ2S̃T

]]) ∣∣∣∣∣λ ∈
1
b

√
ln 2

δ

T
,
1

b


=P

EP
[
e|λST |−λ2S̃T

]
≥ 1

δj
E{Dl}l≤T

[
EP

[
e|λST |−λ2S̃T

]] ∣∣∣∣∣λ ∈
1
b

√
ln 2

δ

T
,
1

b


≤ max

λ∈
[

1
b

√
ln 2

δ
T , 1b

]P
(
EP

[
e|λST |−λ2S̃T

]
≥ 1

δj
E{Dl}l≤T

[
EP

[
e|λST |−λ2S̃T

]])

(a)
∼
= max

λ∈{λ1,...,λJ}
P
(
EP

[
e|λST |−λ2S̃T

]
≥ 1

δj
E{Dl}l≤T

[
EP

[
e|λST |−λ2S̃T

]])
≤

J∑
j=1

P
(
EP

[
e|λjST |−λ2

j S̃T

]
≥ 1

δj
E{Dl}l≤T

[
EP

[
e|λjST |−λ2

j S̃T

]])
(b)
≤J × δj = δ,

(32)

where (a) we use the discretization of λ, where (b) we apply Lemma D.2.

Thus, we get for all λ ∈
[
1
b

√
ln 2

δ

T ,min

{√
DKL(P∥P )+ln 2

δ

EP [S̃T ]
, 1
b

}]
, we can obtain the inequality as in Equation (28)

|EP [ST (θ)]| ≤ 2

√
EP
[
S̃T

](
DKL(P∥P ) + ln

2

δj

)

≤2
√
EP
[
S̃T

](
DKL(P∥P ) + ln

2J

δ

)

=2NH

√
T

(
DKL(P∥P ) + ln

2J

δ

)
= 2NH

√
T

(
DKL(P∥P ) + ln

O(lnT )
δ

)
,

(33)

with probability at least 1− δ.

If min

{√
DKL(P∥P )+ln 2

δ

EP [S̃T ]
, 1
b

}
= 1

b , which implies

EP
[
S̃T

]
≤ b2(DKL(P∥P ) + ln

2

δ
) (34)

, and for this value of λ = 1
b , we put Equation (34) back to Equation (27),

then we get,

|EP [ST (θ)]| ≤ bDKL(P∥P ) + b ln
2

δ
+

1

b
EP
[
S̃T

]
≤ 2b(DKL(P∥P ) + ln

2

δ
) ≤ 2NH(DKL(P∥P ) + ln

2

δ
)

(35)
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Then under the same argument we did previously for Equation (33), we have

|EP [ST (θ)]| ≤ 2b(DKL(P∥P ) + ln
2

δj
)

≤ 2NH(DKL(P∥P ) + ln
2J

δ
) = 2NH

(
DKL(P∥P ) + ln

O(lnT )
δ

)
.

(36)

Note, the range of λ depends on the S̃T , which is sample dependent, thus we have the bound also depends on the
sample.

Now if we let S̃T follow the definition in (20), now EP
[
S̃T

]
= S̃T since S̃T is not random. Now the λ does

not have an upper bound. We use the geometric sequence over the range of
[√

ln 2
δ

S̃T
,∞
]
, where

√
ln 2

δ

S̃T
is given

when DKL(P∥P ) = 0. We use the same argument, let λj = cj
√

ln 2
δ

S̃T
for some c > 1 and j ≥ 0. For given value

of DKL(P∥P ), the optimal λj in (22) equals to
√

DKL(P∥P )+ln 2
δ

S̃T
, which requires j is the solution of cj

√
ln 2

δ

S̃T
=√

DKL(P∥P )+ln 2
δ

S̃T
, and we floor the value of j to the nearest integer, which is

⌊
ln

(
DKL(P∥P )

ln( 2
δ )

+ 1

)
/(2 ln c)

⌋
≤(

ln

(
DKL(P∥P )

ln( 2
δ )

)
+ 1

)
/(2 ln c).

As the same procedures in Equation (32) we used for deriving Equation (33), we go back to the proof of Corollary
C.2, we let δ =

∑∞
j=0 δj =

∑∞
j=0 2

−(j+1)δ, with δj = 2−(j+1)δ, j ∈ N≥0.

Then with a similar argument in Equation (32), for any δj = 2−(j+1)δ, we have we have

P

EP
[
|λST | − λ2S̃T

]
>= DKL(P∥P ) + ln

2

δj

∣∣∣∣∣λ ∈
√ ln 2

δ

S̃T
,∞


∼
= max
λ∈{λ1,...}

P
(
EP

[
e|λST |−λ2S̃T

]
≥ 1

δj
E{Dl}l≤T

[
EP

[
e|λST |−λ2S̃T

]])
≤

∞∑
j=1

P
(
EP

[
e|λjST |−λ2

j S̃T

]
≥ 1

δj
E{Dl}l≤T

[
EP

[
e|λjST |−λ2

j S̃T

]])

≤
∞∑
j=1

×δj =
∞∑
j=1

δ2−(j+1) = δ.

(37)

In the end, we get for all λ ∈
[√

ln 2
δ

S̃T
,∞
]
, we can obtain the inequality as in Equation (28)

|EP [ST (θ)]| ≤ 2

√
S̃T

(
DKL(P∥P ) + ln

2

δj

)

≤ 2

√
S̃T

(
DKL(P∥P ) + ln

2 ∗ 2j
δ

)

≤ 2

√√√√ T∑
l=1

(al − bl)2

8

(
DKL(P∥P ) + ln

2

δ
+

ln 2

2 ln c

(
ln

(
DKL (P∥P )

ln( 2δ )

)
+ 1

))

≤
√
2NH

√
T

(
DKL(P∥P ) + ln

2

δ
+

ln 2

2 ln c

(
ln

(
DKL (P∥P )

ln( 2δ )

)
+ 1

))
.

(38)

By utilizing Equation (10), the joint distribution can be decomposed into products of independent distributions
that are solely dependent on the preceding episode, which can be successively absorbed into the filtration we
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defined. By P =
∏T−1
l=0 Pl and P =

∏T−1
l=0 P l, we have

DKL (P∥P ) =

T∑
l=1

DKL (Pl−1∥P l−1) , (39)

putting Equation (39) back into (38), we have

|EP [ST (θ)]| ≤
√
2NH

√√√√T

(
T∑
l=1

DKL (Pl−1∥P l−1) + ln
2

δ
+

ln 2

2 ln c

(
ln

(∑T
l=1 DKL (Pl−1∥P l−1)

ln( 2δ )

)
+ 1

))
. (40)

Next, by Lemma C.4, we have

T−1∑
l=1

DKL (Pl∥P l) ≤
2λ2r2

smin(1− α)2
1− α2(T−1)

1− α2

.

Return to T := K/N , then take δ = 2 exp (−K), choose c such that ln 2
2 ln c = 1, and by the inequality

√
a+ b ≤√

a +
√
b and ln(K) +K ≤

√
2K for any K > 0, some basic algebra, we get the final bound in Theorem 3.3

Equation (5).

Lemma C.4. Suppose Assumption 3.1 holds. Then, for any l ∈ {1, . . . , T − 1}, the following bound on the KL
divergence holds:

T−1∑
l=1

DKL(Pl∥P l) ≤
2λ2r2

smin (1− α)2
· 1− α2(T−1)

1− α2
.

Proof. For any l, we denote lth λ as λl, so λ1 = λ, λl = αl−1λ. First we have

DKL (Pl∥P l) ≤
2∥Pl − P l∥2∞

smin
.

Further, given the updating rule, P l = λlP l−1 + (1− λl)Pl, we have

∥Pl − P l∥∞ = ∥Pl − λlP l−1 − (1− λl)Pl∥∞ = ∥λlPl − λlP l−1∥∞
= ∥λlPl − λl(λl−1P l−2 + (1− λl−1)Pl−1)∥∞ = ∥λl(Pl − Pl−1) + λlλl−1(Pl−1 − Pl−2)∥∞
= ∥λl(Pl − Pl−1) + λlλl−1(Pl−1 − (λl−2P l−3 + (1− λl−2)Pl−2))∥∞
= ∥λl(Pl − Pl−1) + λlλl−1(Pl−1 − Pl−2) + λlλl−1λl−2(Pl−2 − P l−3)∥∞
= · · ·
= ∥λl(Pl − Pl−1) + λlλl−1(Pl−1 − Pl−2) + · · ·+ λlλl−1 · · ·λ2(P2 − P1) + λlλl−1λl−2 · · ·λ1(P1 − P 0)∥∞
= ∥αl−1λ1(Pl − Pl−1) + αl−1+l−2λ1(Pl−1 − Pl−2) + · · ·+ αl−1+l−2+···+1λ1(P1 − P0)∥∞

≤ λ1r
αl−1

1− α
,

where we use, P 0 = P0, λl = αλl−1, and∥Pl − Pl−1∥∞ ≤ r, we have DKL (Pl∥P l) ≤ 2λ2r2α2l−2

smin(1−α)2 , thus we have∑T−1
l=1 DKL (Pl∥P l) ≤

∑T−1
l=1

2λ2r2α2l−2

smin(1−α)2 ≤
2λ2r2

smin(1−α)2
1−α2(T−1)

1−α2 .

C.4 Proof of Theorem 3.4
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Lemma C.5 (Sample Complexity For Policy Gradient). Consider the setting of Thm. 3.3. Given a small
ϵ > 0, with proper choice of learning rate β, If the number of iterations T satisfies T = Õ(ϵ−4). Then
Expected loss− (−J∗) ≤ O(ϵ).

Proof. Refer the Corollary C.1 in Yuan et al. (2022) for details.

We then begin to prove Theorem 3.4.

Proof. By the proof of Theorem 3.3 , we have

|Expected loss− Training error| ≤ R(DKL(P∥P )), then we impose the following conditions:

1. let R(DKL(P∥P )) ≤ ϵ
2 ,

2. and let Expected loss− (−J∗) ≤ O( ϵ2 ).
By satisfying both conditions 1 and 2, we obtain, Training error− (−J∗) ≤ O(ϵ). The value of K can then be
determined to satisfy these conditions.

D Auxiliary Theorems and Lemmas
Lemma D.1 (Popoviciu’s inequality on variances, Wainwright (2019)). For bounded random variable x ∈ [a, b],
then Var [x] ≤ (b−a)2

4

Lemma D.2 (Markov’s Inequality, Wainwright (2019)). For any non-negative random variable x, it holds that
P(x ≥ t) ≤ E[x]

t . Taking t = E[x]
δ , where δ ∈ (0, 1), it results in with probability at least 1− δ, 0 ≤ x ≤ E[x]

δ .

Theorem D.3 (Azuma-Hoeffding Inequality, Wainwright (2019)). For a sequence of Martingale Difference
Sequence random variable {Dl}Tl=1, if we have Dl ∈ [al, bl] almost sure for some constant [al, bl] and l = 1, 2, . . . , T ,

the summation ST :=
∑T
l=1 Dl, and let S̃T =

∑T
l=1(bl−al)

2

8 then:

P (|ST | ≥ t) ≤ 2e
−t2

S̃T (41)

Equivalently, the moment-generating function satisfies

E
[
eλST

]
≤ eλ

2S̃T . (42)

Furthermore, if we choose t =
√

1
2 ln

2
δ

∑T
l=1(bl − al)2, we get P

(
|ST | >

√
1
2 ln

2
δ

∑T
l=1(bl − al)2

)
≤ δ.

Theorem D.4 (Freedman’s inequality, Freedman (1975)). Let FT , {Dl}l≤T , follow the definition in Equa-
tion (12), and let |Dl| ≤ b with probability at least 1 and E [Dl|Fl−1] = 0. Let ST :=

∑T
l=1 Dl and let

S̃T :=
∑T
l=1 E

[
D2
l |Fl−1

]
. Then for any λ ∈ [0, 1

b ]

E{Dl}l≤T

[
eλST−λ2S̃T

]
≤ 1 (43)

Proof.

EDT

[
eλDT |FT−1

] (a)
≤EDT

[
1 + λDT + λ2D2

T |FT−1

]
=1 + λ2EDT

[
D2
T |FT−1

]
(b)
≤ eλ

2EDT [D
2
T |FT−1]

(44)
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Where (a) holds since ex ≤ 1 + x + x2 for 0 < x ≤ 1, thus, we require λDT ≤ 1, so λ ≤ 1
b , and (b) holds by

1 + x ≤ ex. Now we have

E{Dl}l≤T

[
eλST−λ2S̃T

] (a)
= E{Dl}l≤T

[
eλST−1−λ2S̃T−1+λDT−λ2 E[(DT )2|FT−1]

]
(b)
= E{Dl}l≤T−1

[
eλST−1−λ2S̃T−1 × EDT

[
eλDT |FT−1

]
× e−λ

2 E[(DT )2|FT−1]
]

(c)
≤ E{Dl}l≤T−1

[
eλST−1−λ2S̃T−1

]
≤ ...

≤ 1.

(45)

where (a) holds by the definition of S̃T , and (b) holds by the definition of the definition DT |FT−1, where (c)
holds by (44), and in the last step above we have recursively applied the above argument.

Theorem D.5 (Donsker−Varadhan’s Representation formula, Donsker and Varadhan (1983)). Given a proba-
bility space (X ,B) and a bounded real-valued function f , where f(x) is a measurable function f : X → R, x is
a random variable, and any two probability distributions P0 and P over X (or, if X is uncountably infinite, two
probability density functions),

DKL (P∥P ) ≥ EP [f(x)]− lnEP
[
ef(x)

]
. (46)

The lnEP
[
ef(x)

]
on the right-hand side is the cumulant generating function.

E Policy Function Parameter θ With A Gaussian Prior
E.1 Neural Network Parametrization
In Equation (7), the parameter θ can represent the weights of a neural network. Here, we provide details on how
we set up the parameter updates for the neural network weights. Let θ = (wr, br) denote the random weights
and biases of the r-th (r ∈ N≥1) network layer. Additionally, let ϵr and ϵbr be multivariate standard normal
distributed random variables. The random weights wr and biases br are defined as follows:

wr = µr ⊙ (1 + γrϵr), γr = ln(1 + exp (δr)), (47)

br = µbr ⊙ (1 + γbrϵbr ), γbr = ln(1 + exp (δbr )). (48)

This implies that wr and br are multivariate normal distributed according to:

wr ∼ N (µr, γ
2
rdiag

(
µ2
r

)
)), br ∼ N (µbr , γ

2
brdiag

(
µ2
br

)
). (49)

During optimization in each iteration, a sample of wr and br is drawn from the random network parameters to
perform gradient descent.

The indirect sampling according to Equations (47) and (48) ensures that the parameters µr, γr, µbr , γbr can be
updated. The normal prior p(θ) is defined as:

wr ∼ N (µ
r
, γ2
r
), br ∼ N (µ

br
, γ2
br
). (50)

Thus, the posterior distribution for the neural network is given as p(θ|D) = p(θ)p(D|θ)/
∫
p(θ)p(D|θ)dθ, where

p(D|θ) := p(g(τ)|θ) is the data likelihood. The exact likelihood function p(D|θ) and posterior policy p(θ|D) are
left as future research, as mentioned in section 3.3 "Posterior Distribution and Prior Distribution".
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Instead of analytically deriving p(θ|D), we assume it belongs to a common distribution family of the prior, but
with unknown parameters, which are updated by minimizing the upper bound. Therefore, we approximate the
posterior p(θ|D) by a proposed distribution q(θ).

Following this approach, we can approximate the posterior p(θ|D) by updating the parameters of q(θ) using the
indirect sampling chain rule. We first sample a θ ∼ (Nwr

,Nbr ), then evaluate the right-hand side in Equation (8).

We can calculate the derivatives of Û(P, {Mi}i∈[N ] , {θl−1,j}j∈[M ] ;µ, σ, µ, σ) with respect to µr, µbr , δr, δbr and
µ
r
, µ
br

, δr, δbr in Equations (47) and (48), which we used in our implementation. 1

F Environment and Experiment

Table 1: Different Lifelong Environments

CartPole-GMM
cart mass 0.15[N (1, 0.12) + 0.15N (5, 0.12)] + 0.18[N (2, 0.12) +

0.18N (4, 0.12)] + 0.34N (3, 0.12)
pole mass 0.15[N (0.4, 0.012) +N (0.5, 0.012)] +

0.18[N (0.2, 0.012)+N (0.3, 0.012)]+0.34N (0.1, 0.012)
pole length 0.15[N (0.3, 0.012) +N (0.7, 0.012)] +

0.18[N (0.4, 0.012)+N (0.6, 0.012)]+0.34N (0.5, 0.012)

CartPole-Uniform cart mass U(1, 5)
pole mass U(0.1, 0.5)
pole length U(0.3, 0.7)

LunarLander-GMM
main engine power 0.15[N (11, 0.12) + 0.18N (12, 0.12)] +

0.34[N (13, 0.12) + 0.18N (14, 0.12)] + 0.15N (15, 0.12)
side engine power 0.15[N (0.45, 0.012) + 0.18N (0.55, 0.012)] +

0.34[N (0.65, 0.012) + 0.18N (0.75, 0.012)] +
0.15N (0.85, 0.012)

LunarLander-Uniform main engine power U(3, 20)
side engine power U(0.15, 0.95)

Swimmer-Uniform movement direction θ ∼ U(0, π)
Humanoid-Direction-Uniform movement direction θ ∼ U(0, 2π)

Ant-Direction-Uniform goal direction θ ∼ U(0, 2π)
Ant-Forward-Backward-Bernoulli movement direction θ ∼ Categorical(0, π; 0.5)

HalfCheetah-gravity See Mendez et al. (2020); Fu et al. (2022)

HalfCheetah-bodyparts See Mendez et al. (2020); Fu et al. (2022)

Hopper-gravity See Mendez et al. (2020); Fu et al. (2022)

Hopper-bodyparts See Mendez et al. (2020); Fu et al. (2022)

Walker-gravity See Mendez et al. (2020); Fu et al. (2022)

Hopper-bodyparts See Mendez et al. (2020); Fu et al. (2022)

F.1 OpenAI and MAMuJoCo Environment
F.1.1 CartPole-GMM Environment
In the classic CartPole environment depicted in §F.1 Figure 5a, a pole is attached by an un-actuated joint to a
cart, which moves along a frictionless track. The system is controlled by applying a force of +1 or -1 to the cart.
A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole
falls or the cart moves far away from the center. Important parameters in the Cartpole Environment are subject
to Gaussian Mixture probability distributions to create a diverse of tasks, as in Table 1.

F.1.2 CartPole-Uniform Environment
Similar to the CartPole-GMM, the parameters in the Cartpole Environment are subject to some uniform
distributions herein, as in Table 1.

1We have included the pseudo-code in the Algorithm section. As for the source code, we will publish it on GitHub if
our paper is accepted. Thank you.
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(a) CartPole (b) LunarLander (c) Swimmer (d) Ant

(e) Humanoid (f) Cheetah (g) Hopper (h) Walker

Figure 5: The illustration of environments. (a) CartPole, (b) LunarLander, (c) Swimmer, (d) Ant, (e) Humanoid,
(f) Cheetah, (g) Hopper, (h) Walker

F.1.3 LunarLander-GMM Environment
The general task in LunarLander environment (as shown in §F.1 Figure 5b) is to let lunar module land at a
pre-defined goal location. The parameters in the LunarLander Environment are subject to Gaussian Mixture
probability distributions herein, as in Table 1.

F.1.4 LunarLander-GMM Environment
The general task in LunarLander environment (as shown in §F.1 Figure 5b) is to let lunar module land at a
pre-defined goal location. The parameters in the LunarLander Environment are subject to Gaussian Mixture
probability distributions herein, as in Table 1.

F.1.5 LunarLander-Uniform Environment
Similar to the LunarLander-GMM enviroment, the parameters are subject to uniform probability distributions
herein, as in Table 1.

F.1.6 Swimmer-Uniform Environment
The original Swimmer environment (as shown in Figure 5c) is part of the Mujoco simulation suite. The Swimmer
is a multi-link agent suspended in a two-dimensional pool, consisting of three or more segments (links) connected
by articulation joints (rotors). The goal of the agent is to move as fast as possible towards the right by applying
torques to the rotors. The forward movement is measured as the change in the x-coordinate of the swimmer’s
front tip, while the control cost penalizes the swimmer for large actions. The total reward is the sum of the
forward reward and control penalty, and the environment ends when the episode reaches a maximum length of
1000 timesteps.

In the default setup, the swimmer consists of three links, and the agent’s observations include the angles and
angular velocities of the rotors, as well as the linear velocity of the front tip along the x- and y-axes. The challenge
in this environment comes from the need to balance efficient forward movement while minimizing control costs,
with the goal being to achieve the highest reward by maximizing forward movement while keeping control actions
minimal.

In the modified Swimmer-Uniform environment, the objective has been extended to include movement in any
direction, rather than just forward. The direction of movement is determined by randomly sampling an angle θ
uniformly from the interval [0, π]. This angle defines the goal movement direction using a unit vector [cos(θ), sin(θ)],
allowing the swimmer to move in a random direction within the 2D plane.

During each timestep, the agent’s forward reward is computed as the dot product of the swimmer’s displacement
vector (posafter− posbefore) and the goal direction vector. This encourages the swimmer to move in the assigned
random direction. As in the original environment, there is a control cost that penalizes excessive torque applied
to the rotors, calculated as 0.5× 10−4 ×∑ action2, where the sum is over the torques applied between the links.
The total reward is the sum of the forward reward and the control cost penalty.

The agent’s state observation remains the same, consisting of the angles and angular velocities of the rotors, as
well as the velocity of the front tip along the x- and y-axes. The episode ends after a maximum length of 1000
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timesteps, or when the agent reaches a specified goal. This modification introduces task diversity by randomizing
the goal direction, making it a suitable environment for evaluating lifelong learning systems.

F.1.7 Ant-Direction-Uniform Environment
We adopt Ant Direction, Ant Forward-Backward, and Humanoid Direction environments, as
shown in Figure 5d, and 5e, whose implementation is from learn2learn Arnold et al. (2020)
https://github.com/learnables/learn2learn/tree/master/learn2learn/gym/envs/mujoco.

For Ant-Direction environment (as shown in Figure 5d), the agent controls an ant-like robot in the Mujoco
simulator with the objective of moving in a randomly sampled direction on the XY plane. At the start of each
task, a random direction is determined by drawing a uniform random variable θ from the interval [0, 2π]. This
angle θ defines the target movement direction as a unit vector [sin(θ), cos(θ)].

In the Ant-Direction-Uniform implementation, key parameters such as the goal direction are generated randomly
for each task by sampling the angle from a uniform distribution. During each timestep, the agent receives a
reward based on its forward movement in the direction defined by the goal vector, calculated as the dot product
of the goal direction vector and the change in the ant’s torso position before and after applying the action,
normalized by the timestep dt.

Additional costs are associated with controlling the ant, including a control cost computed as 0.5×∑ action2,
where the sum is over the joint torques applied by the agent. Similarly, a contact cost penalizes the external
contact forces experienced by the ant, computed as 0.5× 10−3 ×∑ contact forces2. The agent also receives a
constant survival reward of 1.0 per timestep, incentivizing it to remain upright.

The termination condition for the episode occurs if the ant’s torso falls below a height of 0.2 or rises above 1.0,
indicating failure or unrealistic behavior. The agent’s state observation consists of the joint positions (excluding
the torso orientation), joint velocities, and external contact forces, all of which are concatenated into a single
vector.

F.1.8 Ant-Forward-Backward-Bernoulli Environment
The original Ant-Forward-Backward environment requires the agent to control an ant-like robot in the Mujoco
simulator, with the goal of moving either forward or backward along the X-axis. At the start of each task, the
movement direction is randomly sampled from a Bernoulli distribution, where +1 indicates forward movement
and −1 indicates backward movement, each with a probability of 0.5. The reward structure in this environment is
based on the ant’s velocity in the chosen direction, with additional control and contact costs penalizing excessive
actions or external forces. The goal is to maximize movement in the assigned direction while minimizing the costs.
The episode terminates either when the agent fails to stay upright or when a maximum number of timesteps is
reached.

In the modified Ant-Forward-Backward-Bernoulli environment, the movement direction is also determined using a
Bernoulli distribution, but the direction is represented by an angle θ, sampled from the set {0, π}, corresponding
to forward and backward movement respectively. The goal direction is then defined as a unit vector [sin(θ), cos(θ)],
where θ = 0 indicates forward movement and θ = π indicates backward movement.

During each timestep, the agent’s forward reward is computed as the dot product of the ant’s displacement vector
(pos_after− pos_before) and the goal direction vector. This reward structure encourages efficient movement in
the assigned direction. The forward reward is calculated as:

reward_fwd =
∑

(goal_direction · (pos_after− pos_before))/dt

As in the original environment, there is a control cost for large actions, computed as 0.5 ×∑ action2, and a
contact cost for external forces, computed as 0.5× 10−3 ×∑ external forces2. The agent also receives a survival
reward of 1.0 per timestep, incentivizing it to remain upright.

The episode terminates if the ant’s torso height falls below 0.2 or rises above 1.0, indicating failure or unrealistic
behavior. The state observation consists of joint positions (excluding the torso orientation), joint velocities, and
external contact forces, all concatenated into a single observation vector. This modified environment introduces
variability by randomly assigning forward or backward movement based on a Bernoulli distribution.
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F.1.9 Humanoid-Direction-Uniform Environment
The original Humanoid-Direction environment (as shown in Figure 5e) requires the agent to control a humanoid
robot in the Mujoco simulator with the objective of moving in a randomly assigned direction in the XY plane.
At the start of each task, the direction is randomly sampled from a 2D normal distribution and normalized to
represent a unit vector. The agent’s goal is to move in this direction as efficiently as possible. The reward function
is based on the humanoid’s velocity in the assigned direction, with a control cost penalizing excessive actions and
an impact cost penalizing large contact forces. A constant alive bonus is added at each timestep to encourage the
humanoid to stay upright and moving.

In the original environment, the agent’s state observations include the joint positions and velocities, along with
external forces acting on the humanoid’s body. The agent must maximize its forward velocity while minimizing
control and impact costs. The environment ends when the episode reaches its maximum length or the humanoid
falls down, indicated by its torso height moving outside a predefined range.

In the modified Humanoid-Direction-Uniform environment, the movement direction is determined by sampling a
uniform random angle θ from the interval [0, 2π]. This angle defines the goal movement direction using the unit
vector [sin(θ), cos(θ)], allowing for movement in any direction on the XY plane.

During each timestep, the agent receives a reward based on its movement in the direction of the goal vector,
computed as the dot product of the humanoid’s displacement and the goal direction vector. The forward velocity
reward is given by 1.25×∑ goal_direction · (pos_after− pos_before)/dt. Additional costs include a control cost
of 0.1×∑ action2, penalizing large actions, and an impact cost of 0.5× 10−6 ×∑ external_forces2, penalizing
large external forces acting on the humanoid. The total reward is the sum of the forward velocity reward, alive
bonus of 5.0 per timestep, and penalties for control and impact costs.

The episode ends if the humanoid’s torso height falls below 1.0 or rises above 2.0, signaling failure or unrealistic
behavior. The state observation consists of joint positions, velocities, inertial data, and external forces, providing
the necessary information for the agent to control the humanoid in various directions. This modified environment
introduces diverse task variations by randomizing the movement direction for each episode, making it suitable for
lifelong learning experiments.

F.1.10 HalfCheetah Environment (Gravity and Body-Parts)
The HalfCheetah environment (as shown in Figure 5f) simulates a 2D cheetah robot with multiple joints and a
torso, where the agent controls the forces applied to the joints in order to move forward as efficiently as possible.
In the gravity domain, each task corresponds to a random gravity value between 0.5g and 1.5g. In the body-parts
domain, the size and mass of four body parts (head, torso, thigh, and leg) are randomly scaled between 0.5× and
1.5× their nominal values. These task variations allow for highly diverse challenges as the agent must adapt to
changes in both external forces and internal dynamics.

F.1.11 Hopper Environment (Gravity and Body-Parts)
The Hopper environment (as shown in Figure 5g) simulates a single-legged robot with joints at the knee and hip,
and the goal is to hop forward as efficiently as possible. In the gravity domain, each task is defined by a random
gravity value between 0.5g and 1.5g. In the body-parts domain, the size and mass of four body parts (head,
torso, thigh, and leg) are randomly scaled between 0.5× and 1.5× their nominal values. These task variations
introduce significant changes in the robot’s behavior, requiring the agent to adapt its hopping strategy to different
environmental and physical dynamics.

F.1.12 Walker-2D Environment (Gravity and Body-Parts)
The Walker-2D environment (as shown in Figure 5h) simulates a bipedal robot walking on a plane. The agent
must control the forces applied to the legs and torso to walk forward without falling. In the gravity domain, tasks
are defined by random gravity values between 0.5g and 1.5g. In the body-parts domain, the size and mass of the
head, torso, thigh, and leg are scaled randomly between 0.5× and 1.5× their nominal values. These variations
create diverse and challenging tasks where the agent must adjust its gait and posture to compensate for different
physical properties.

F.2 Hyper-Parameters
Table 2 list hyperparameters used in EPICG. Among these hyperparameters, the frequency of lifelong update, i.e.,
N is very important and closely related to the performance of both algorithm. Therefore, N is choosen carefuly
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for each environment, whose values are shown in Table 3. For hyperparameters of other methods, we use the
original source code with parameters and model architectures suggested in the original paper. The experiments
were done in the GeForce RTX 2080 Ti GPU with 10 GB Memories.

Hyperparameters Values
taks (K) 2000 or 1000

learning rate 10−4

β 10−4

N chosen the best from {5, 10, 25, 50}
initial value of λ 0.9
decay factor of λ 0.95

Table 2: Hyparameters of EPICG

Environments EPICG
Cartpole-GMM 25

Cartpole-Uniform 25
LunarLander-GMM 25

LunarLander-Uniform 25
Ant-Direction-Uniform 25

Ant-Forward-Backward-Bernoulli 10
Swimmer-Uniform 25

Humanoid-Direction-Uniform 10
HalfCheetah-gravity 10

HalfCheetah-bodyparts 10
Hopper-gravity 25

Hopper-bodyparts 25
Walker-gravity 25

Walker-bodyparts 25

Table 3: Lifelong update frequency of EPICG


	Introduction
	Preliminaries
	Reinforcement Learning
	Lifelong Reinforcement Learning
	PAC-Bayes Theory

	Methods
	PAC-Bayes Framework for Lifelong RL
	An Algorithm based on PAC-Bayes Lifelong Framework
	Posterior Distribution and Prior Distribution
	A Practical EPIC Algorithm

	Experiments
	Experimental Setup
	Effective Lifelong Learning
	Further Improvement
	Ablation on KL divergence regularization
	Experiments on Memory Size N

	Conclusion and Future Works
	Broader Impact and Ethical Statement
	Related Works
	Detailed Proofs
	Proof of Corollary 3.2
	Azuma-Hoeffiding or Freedmans inequality for martingale difference sequences for RL
	PAC-Bayes Bound
	Proof of Theorem 3.4

	Auxiliary Theorems and Lemmas
	Policy Function Parameter  With A Gaussian Prior
	Neural Network Parametrization

	Environment and Experiment
	OpenAI and MAMuJoCo Environment
	CartPole-GMM Environment
	CartPole-Uniform Environment
	LunarLander-GMM Environment
	LunarLander-GMM Environment
	LunarLander-Uniform Environment
	Swimmer-Uniform Environment
	Ant-Direction-Uniform Environment
	Ant-Forward-Backward-Bernoulli Environment
	Humanoid-Direction-Uniform Environment
	HalfCheetah Environment (Gravity and Body-Parts)
	Hopper Environment (Gravity and Body-Parts)
	Walker-2D Environment (Gravity and Body-Parts)

	Hyper-Parameters


